-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWheels_Companies_problem.py
59 lines (51 loc) · 2.48 KB
/
Wheels_Companies_problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# coding: utf-8
# Author: Erick Armingol
# Exercise for book "Inteligencia Artificial - Fundamentos, práctica y aplicaciones" by Alberto García Serrano
import sys
import argparse
parser = argparse.ArgumentParser(description='Optimal solution for the cost of selecting one company for each type of product. Each company could be picked once.')
parser.add_argument('--optimization', metavar="", dest="operation", default="min", help="'min' for Minimization and 'max' for Maximization (without quotes)")
args = parser.parse_args()
operation = args.operation
def backtracking(operation, variables, visited, optimum, data, levels, children, depth):
for child in children:
if child not in visited:
variables[depth] = data[levels[depth]][child]
visited2 = visited + [child]
if depth < len(levels) - 1:
optimum = backtracking(operation, variables[:], visited2, optimum, data, levels, children, depth + 1)
else:
sol = evaluate_solution(variables)
if operation == 'max': opt_coeff = 1.0
elif operation == 'min': opt_coeff = -1.0
else: opt_coeff = 1.0 # Assuming that the problem is a maximization
# Solution is better than optimum?
if (opt_coeff * sol) > (opt_coeff * evaluate_solution(optimum[0])):
optimum[0] = variables
optimum[1] = visited2
return optimum
def evaluate_solution(variables):
fn = 0
for var in variables:
fn += var
return fn
if __name__ == "__main__":
type_of_wheels = ['T', 'H', 'V', 'W']
companies = ['E1', 'E2', 'E3', 'E4']
data = {'T' : {'E1' : 20, 'E2': 50, 'E3' : 60, 'E4' : 100},
'H' : {'E1' : 30, 'E2': 50, 'E3' : 55, 'E4' : 80},
'V' : {'E1' : 20, 'E2': 40, 'E3' : 50, 'E4' : 60},
'W' : {'E1' : 40, 'E2': 50, 'E3' : 60, 'E4' : 70}}
depth = 0
visited = []
variables = [0 for wheel in type_of_wheels]
if operation == 'max':
optimum = [[-1*sys.maxint for var in variables], []]
elif operation == 'min':
optimum = [[sys.maxint for var in variables], []]
else:
optimum = [[-1 * sys.maxint for var in variables], []] # Assuming that the problem is a maximization
optimal_solution = backtracking(operation, variables, visited, optimum, data, type_of_wheels, companies, depth)
print(optimal_solution[0])
print("Total: ", sum(optimal_solution[0]))
print(optimal_solution[1])