forked from cumulo-autumn/StreamDiffusion
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
162 lines (129 loc) · 3.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import asyncio
import base64
import logging
import os
import sys
from io import BytesIO
from pathlib import Path
import uvicorn
from config import Config
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from PIL import Image
from pydantic import BaseModel
sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))
from utils.wrapper import StreamDiffusionWrapper
logger = logging.getLogger("uvicorn")
PROJECT_DIR = Path(__file__).parent.parent
class PredictInputModel(BaseModel):
"""
The input model for the /predict endpoint.
"""
prompt: str
class PredictResponseModel(BaseModel):
"""
The response model for the /predict endpoint.
"""
base64_image: str
class UpdatePromptResponseModel(BaseModel):
"""
The response model for the /update_prompt endpoint.
"""
prompt: str
class Api:
def __init__(self, config: Config) -> None:
"""
Initialize the API.
Parameters
----------
config : Config
The configuration.
"""
self.config = config
self.stream_diffusion = StreamDiffusionWrapper(
mode=config.mode,
model_id_or_path=config.model_id_or_path,
lora_dict=config.lora_dict,
lcm_lora_id=config.lcm_lora_id,
vae_id=config.vae_id,
device=config.device,
dtype=config.dtype,
acceleration=config.acceleration,
t_index_list=config.t_index_list,
warmup=config.warmup,
use_safety_checker=config.use_safety_checker,
cfg_type="none",
)
self.app = FastAPI()
self.app.add_api_route(
"/api/predict",
self._predict,
methods=["POST"],
response_model=PredictResponseModel,
)
self.app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
self.app.mount("/", StaticFiles(directory="./frontend/dist", html=True), name="public")
self._predict_lock = asyncio.Lock()
self._update_prompt_lock = asyncio.Lock()
async def _predict(self, inp: PredictInputModel) -> PredictResponseModel:
"""
Predict an image and return.
Parameters
----------
inp : PredictInputModel
The input.
Returns
-------
PredictResponseModel
The prediction result.
"""
async with self._predict_lock:
return PredictResponseModel(base64_image=self._pil_to_base64(self.stream_diffusion(prompt=inp.prompt)))
def _pil_to_base64(self, image: Image.Image, format: str = "JPEG") -> bytes:
"""
Convert a PIL image to base64.
Parameters
----------
image : Image.Image
The PIL image.
format : str
The image format, by default "JPEG".
Returns
-------
bytes
The base64 image.
"""
buffered = BytesIO()
image.convert("RGB").save(buffered, format=format)
return base64.b64encode(buffered.getvalue()).decode("ascii")
def _base64_to_pil(self, base64_image: str) -> Image.Image:
"""
Convert a base64 image to PIL.
Parameters
----------
base64_image : str
The base64 image.
Returns
-------
Image.Image
The PIL image.
"""
if "base64," in base64_image:
base64_image = base64_image.split("base64,")[1]
return Image.open(BytesIO(base64.b64decode(base64_image))).convert("RGB")
if __name__ == "__main__":
from config import Config
config = Config()
uvicorn.run(
Api(config).app,
host=config.host,
port=config.port,
workers=config.workers,
)