-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHuffman.cpp
181 lines (153 loc) · 5.42 KB
/
Huffman.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#include "Huffman.h"
#include <queue>
#include <vector>
#include <iostream>
HuffmanNode::HuffmanNode(char data, unsigned freq)
{
this->data = data;
this->freq = freq;
left = right = nullptr;
}
bool compare::operator()(HuffmanNode *l, HuffmanNode *r)
{
return (l->freq > r->freq);
}
void printCodes(HuffmanNode *root, std::string str, std::unordered_map<char, std::string> &huffmanCode)
{
if (!root)
return;
if (root->data != '$')
{
huffmanCode[root->data] = str;
}
printCodes(root->left, str + "0", huffmanCode);
printCodes(root->right, str + "1", huffmanCode);
}
/**
* @brief Generates Huffman codes for the given data.
*
* This function takes a string of data and generates Huffman codes for each character in the data.
* Huffman coding is a lossless data compression algorithm that assigns variable-length codes to different characters
* based on their frequencies of occurrence in the input data. The generated Huffman codes can be used to compress
* the data by replacing each character with its corresponding Huffman code.
*
* @param data The input data for which Huffman codes need to be generated.
* @return A string containing the Huffman codes for each character in the input data.
*/
std::string HuffmanCodes(std::string data) {
// Count frequency of each character
std::unordered_map<char, unsigned> freq;
for (char ch : data) {
freq[ch]++;
}
// Create a priority queue to store nodes of the Huffman tree
std::priority_queue<HuffmanNode *, std::vector<HuffmanNode *>, compare> minHeap;
// Create a leaf node for each character and add it to the priority queue.
for (auto pair : freq) {
minHeap.push(new HuffmanNode(pair.first, pair.second));
}
// Iterate while size of heap doesn't become 1
while (minHeap.size() != 1) {
// Extract the two minimum frequency nodes from min heap
HuffmanNode *left = minHeap.top();
minHeap.pop();
HuffmanNode *right = minHeap.top();
minHeap.pop();
// Create a new internal node with frequency equal to the sum of the two nodes frequencies.
HuffmanNode *top = new HuffmanNode('$', left->freq + right->freq);
top->left = left;
top->right = right;
minHeap.push(top);
}
// Generate Huffman codes
std::unordered_map<char, std::string> huffmanCode;
printCodes(minHeap.top(), "", huffmanCode);
// Encode the input data using the Huffman codes
std::string encodedData = encodeData(data, huffmanCode);
// Return the encoded data
return encodedData;
}
/**
* @brief Decompresses the encoded data using the Huffman algorithm.
*
* This function takes in the encoded data and a pointer to the root of the Huffman tree.
* It performs the decompression process by traversing the Huffman tree based on the encoded data.
* The decompressed data is returned as a string.
*
* @param encodedData The encoded data to be decompressed.
* @param root Pointer to the root of the Huffman tree.
* @return The decompressed data as a string.
*/
std::string HuffmanDecompress(const std::string &encodedData, HuffmanNode *root)
{
std::string decodedData;
HuffmanNode *currentNode = root;
for (char bit : encodedData)
{
if (bit == '0')
{
currentNode = currentNode->left;
}
else if (bit == '1')
{
currentNode = currentNode->right;
}
// When reaching a leaf node
if (!currentNode->left && !currentNode->right)
{
decodedData += currentNode->data;
currentNode = root; // Go back to the root for the next character
}
}
return decodedData;
}
std::string encodeData(const std::string &data, const std::unordered_map<char, std::string> &huffmanCode)
{
std::string encodedData;
for (char ch : data)
{
encodedData += huffmanCode.at(ch);
}
return encodedData;
}
/**
* @brief Builds a Huffman tree based on the given data.
*
* This function takes a string of data and constructs a Huffman tree using the Huffman algorithm.
* The Huffman tree is used for data compression and decompression.
*
* @param data The input data for constructing the Huffman tree.
* @return A pointer to the root node of the constructed Huffman tree.
*/
HuffmanNode *buildHuffmanTree(std::string data)
{
// Count frequency of each character
std::unordered_map<char, unsigned> freq;
for (char ch : data)
{
freq[ch]++;
}
// Create a priority queue to store nodes of the Huffman tree
std::priority_queue<HuffmanNode *, std::vector<HuffmanNode *>, compare> minHeap;
// Create a leaf node for each character and add it to the priority queue.
for (auto pair : freq)
{
minHeap.push(new HuffmanNode(pair.first, pair.second));
}
// Iterate while size of heap doesn't become 1
while (minHeap.size() != 1)
{
// Extract the two minimum frequency nodes from min heap
HuffmanNode *left = minHeap.top();
minHeap.pop();
HuffmanNode *right = minHeap.top();
minHeap.pop();
// Create a new internal node with frequency equal to the sum of the two nodes frequencies.
HuffmanNode *top = new HuffmanNode('$', left->freq + right->freq);
top->left = left;
top->right = right;
minHeap.push(top);
}
// The root of the tree is the last remaining node
return minHeap.top();
}