-
Notifications
You must be signed in to change notification settings - Fork 26
/
hcluster_pangenome_matrix.sh
executable file
·660 lines (540 loc) · 23.7 KB
/
hcluster_pangenome_matrix.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
#!/usr/bin/env bash
# 2015-8 Pablo Vinuesa (1) and Bruno Contreras-Moreira (2):
# 1: http://www.ccg.unam.mx/~vinuesa (Center for Genomic Sciences, UNAM, Mexico)
# 2: http://www.eead.csic.es/compbio (Laboratory of Computational Biology, EEAD/CSIC, Spain)
#: AIM: generate a distance matrix out of a [pangenome|average_identity] matrix.tab file produced with
# get_homologues.pl and accompanying scripts, such as compare_clusters.pl with options -t 0 -m.
# This script applies R functions hclust() and heatmap.2() on such matrices.
#
#: OUTPUT: ph + svg|pdf output of hclust and heatmap2.
progname=${0##*/}
VERSION='1.2_16Sep21' # v1.2_16Sep21
# * added functions cleanup_R_script & print_version
# * thoroughly checked and fixed options and associated names
# * added options -v, -h
# * improved output file checking
# * 100% schellcheck compliance
# NOTE: July 31, 2020 - downgrade of the script form v2.4_20Apr20 to v1.1_26Jan18, which corresponds to
# the one released with the GET_PHYLOMARKERS paper in 2018.
# v1.1_26Jan18 changed fviz_dend for dendextend to plot clustering results for better control of plot params
# and proper plotting of scale-bar in gower-distances-based hclus plots, which don't render
# correctly with fviz_dend. changed default distance back to gower. Improved documentation
# Now depends also on
# v1.1_25Jan18; Major upgrade: added the gap- and silhouette meand width goodness of clustering statistics
# to determine the optimal number of clusters automatically.
# Calls new package factoextra; fviz_dend; fviz_gap_stat
# Improved/updated documentation and extended user input checking
# v0.6_124Dec17: remove the invariant (core-genome) and singleton columns from input table
#v'0.5_14Oct17'; added options -A and -X to control the angle
# and character eXpansion factor of leaf labels
#'0.4_7Sep17' # v0.4_7Sep17; added options -x <regex> to select specific rows (genomes)
# from the input pangenome_matrix_t0.tab
# -c <0|1> to print or not distances in heatmap cells
# -f <int> maximum number of decimals in matrix display (if -c 1)
# v0.3_03Sep15 added ape's function write.tree() to generate a newick string from the hclust() object
# v0.1_14Feb15, first version; generates hclust output in svg() and pdf(), formats,
# plus a heatmap in both formats
date_F=$(date +%F |sed 's/-/_/g')-
date_T=$(date +%T |sed 's/:/./g')
start_time="$date_F$date_T"
#---------------------------------------------------------------------------------#
#>>>>>>>>>>>>>>>>>>>>>>>>>>>> FUNCTION DEFINITIONS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<#
#---------------------------------------------------------------------------------#
function print_notes()
{
cat << NOTES
NOTES:
$progname is a simple shell wrapper for the ape, cluster and gplots packages,
to wich dendextend and factoextra were added later on,
calling functions to generate different distance matrices to compute distance
trees and ordered heatmaps with row dendrograms from the
pan_genome_matrix_t0.tab file generated by compare_clusters.pl
when using options -m and -t 0
1) If the packages are not installed on your system, then proceed as follows:
i) with root privileges, type the following into your shell console:
sudo R
> install.packages(c("ape", "gplots", "cluster", "dendextend", "factoextra"), dependencies=TRUE)
> q()
$ exit # quit root account
$ R # call R
> library("gplots") # load the lib; do your stuff
ii) without root privileges, intall the package into ~/lib/R as follows:
$ mkdir -p ~/lib/R
# set the R_LIBS environment variable before starting R as follows:
$ export R_LIBS=~/lib/R # bash syntax
$ setenv R_LIBS=~/lib/R # csh syntax
# You can type the corresponding line into your .bashrc (or similar) configuration file
# to make this options persistent
# Call R from your terminal and type:
> install.packages(c("ape", "gplots", "cluster", "dendextend", "factoextra"), dependencies=TRUE, lib="~/lib/R")
iii) Once installed, you can read the documentation for packages and functions by typing the following into the R console:
library("gplots") # loads the lib into the environment
help(package="gplots") # read about the gplots package
help(heatmap.2) # read about the heatmap.2 function
help(svg) # read about the svg function, which generates the svg ouput file
help(pdf) # read about the pdf function, which generates the pdf ouput file
...
2. The pangenome_matrix ouput file will be automatically edited, changing PATH for Genome in cell 1,1
3. Uses distance methods from the cluster::daisy() function.
run ?daisy from within R for a detailed description of gower distances for categorical data
http://rfunctions.blogspot.mx/2012/07/gowers-distance-modification.html
http://pbil.univ-lyon1.fr/ade4/ade4-html/dist.binary.html
https://stat.ethz.ch/R-manual/R-devel/library/cluster/html/daisy.html
http://stats.stackexchange.com/questions/123624/gower-distance-with-r-functions-gower-dist-and-daisy
http://cran.r-project.org/web/packages/StatMatch/StatMatch.pdf
http://www.inside-r.org/packages/cran/StatMatch/docs/gower.dist
4. For clustering see
http://www.statmethods.net/advstats/cluster.html for more details/options on hclust
http://ecology.msu.montana.edu/labdsv/R/labs/lab13/lab13.html
http://www.instantr.com/2013/02/12/performing-a-cluster-analysis-in-r/
NOTES
exit 0
}
#---------------------------------------------------------------------------
function check_dependencies()
{
for prog in awk R
do
bin=$(type -P $prog)
if [ -z "$bin" ]; then
echo
echo "# ERROR: $prog not in place!"
echo "# ... you will need to install \"$prog\" first or include it in \$PATH"
echo "# ... exiting"
exit 1
fi
done
echo
echo '# Run check_dependencies() ... looks good: R is installed.'
echo
}
#---------------------------------------------------------------------------
function cleanup_R_script()
{
R_script=$1
perl -pe 's/^[>\+]//; s/^(pdf|svg)\b//; s/\h+2\b//' "$R_script" > "${R_script}.tmp"
mv "${R_script}.tmp" "$R_script"
}
#---------------------------------------------------------------------------
function print_version()
{
echo "$progname v.${VERSION}"
exit 0
}
#---------------------------------------------------------------------------
function print_help()
{
cat << HELP
USAGE synopsis for: [$progname v.$VERSION]:
$progname -i <string (name of matrix file)> [-d <distance> -a <algorithm> -o <format> ...]
REQUIRED
-i <string> name of matrix file
OPTIONAL:
* Clustering
-a <string> algorithm/method for clustering
[ward.D|ward.D2|single|complete|average(=UPGMA)] [def: $algorithm]
-d <string> distance type [euclidean|manhattan|gower] [def: $distance]
* Goodness of clustering
-s <string> goodness of clustering statistic [gap|sil] [def: $clust_stat]
-S <integer> number of random starts (gap statistic) [def: $n_start]
-m <string> method: [firstSEmax|Tibs2001SEmax|
globalSEmax|firstmax|globalmax] [def: $gap_method]
-n <integer> num. of bootstrap replicates (gap stat.) [def: $n_boot]
-k <integer> max. number of clusters [def: ${k}; NOTE: 2<= k <= n-1 ]
* Plotting
-c <int> 1|0 to display or not the distace values [def:$cell_note]
in the heatmap cells
-F <int> maximum number of decimals in matrix display [1,2; def:$decimals]
-T <string> text for Main title [def:$text]
-M <integer> margins_horizontal [def:$margin_hor]
-V <integer> margins_vertical [def:$margin_vert]
-O <string> output file format [svg|pdf] [def:$outformat]
-P <integer> points for plotting device [def:$points]
-H <integer> ouptupt device height [def:$height]
-W <integer> ouptupt device width [def:$width]
-A <'integer,integer'> angle to rotate row,col labels [def $angle]
-X <float> leaf label character expansion factor [def $charExp]
* Filter input pangenome_matrix_t0.tab using regular expressions:
-x <string> regex, like: 'Escherichia|Salmonella' [def $regex]
* Miscelaneous
-N <flag> print Notes and exit [flag]
-v <flag> print version and exit [flag]
EXAMPLE:
$progname -i pangenome_matrix_t0.tab -T "Pan-genome tree" -a ward.D2 -d gower -O pdf -A 'NULL,45' -X 0.8 -s sil
AIM: compute a distance matrix from a pangenome_matrix.tab file produced after running
get_homologues.pl and compare_clusters.pl with options -t 0 -m .
The pangenome_matrix.tab file processed by hclust(), and heatmap.2()
OUTPUT: a newick file with extension .ph and svg|pdf output of hclust and heatmap.2 calls +
goodness of clustering (gap|silhouette width) dentrogram and stats plot.
DEPENDENCIES:
R packages: ape, cluster, gplots, dendextend and factoextra. Run $progname -N for installation instructions.
IMPORTANT NOTES:
1. to get the best display of your genome lables, these should be made as short as possible.
This can be simply done by executing sed commands such as:
sed 's/LongGenusName/L/g; s/speciesname/spn/g' pangenome_matrix_t0.tab > pangenome_matrix_t0.tabed
2. The gap-statistic of clustering goodness is compuationally intensive and takes a long time
(up to hours) to run on a large pan-genome matrix (n_genomes > 50; n_clusters > 8000) with a reasonalbe
(n >= 500) number of bootstrap replicates and independent searches (S >= 20) and large numbers
of potential clusters (k >= 15). The default option is the silhouette-width statistic, which is
much faster to run, although also less powerful and much more conservative.
HELP
[ "$check_dep" -gt 0 ] && check_dependencies
exit 0
}
#------------------------------------------------------------------------#
#------------------------------ GET OPTIONS -----------------------------#
#------------------------------------------------------------------------#
tab_file=
regex=
check_dep=0
cell_note=0
decimals=2
algorithm=ward.D2
distance=gower
#cut_height=0.04
clust_stat=sil
n_start=25
n_boot=100
k=15
gap_method=Tibs2001SEmax
#reorder_clusters=0
text="Pan-genome tree; "
width=17
height=15
points=15
margin_hor=20
margin_vert=21
outformat=pdf
charExp=0.7
angle='NULL,NULL'
#colTax=1
subset_matrix=0
# See bash cookbook 13.1 and 13.2
while getopts ':a:A:c:d:F:H:i:k:m:M:n:O:P:P:s:S:T:V:x:X:W:hNDv?:' OPTIONS
do
case $OPTIONS in
a) algorithm=$OPTARG
;;
A) angle=$OPTARG
;;
c) cell_note=$OPTARG
;;
d) distance=$OPTARG
;;
D) DEBUG=$OPTARG
;;
F) decimals=$OPTARG
;;
h) print_help
;;
H) height=$OPTARG
;;
i) tab_file=$OPTARG
;;
k) k=$OPTARG
;;
m) gap_method=$OPTARG
;;
M) margin_hor=$OPTARG
;;
n) n_boot=$OPTARG
;;
N) print_notes
;;
O) outformat=$OPTARG
;;
P) points=$OPTARG
;;
s) clust_stat=$OPTARG
;;
S) n_start=$OPTARG
;;
T) text=$OPTARG
;;
v) print_version
;;
V) margin_vert=$OPTARG
;;
W) width=$OPTARG
;;
x) regex=$OPTARG
;;
X) charExp=$OPTARG
;;
:) printf "argument missing from -%s option\n" "$OPTARG"
print_help
exit 2
;;
\?) echo "need the following args: "
print_help
exit 3
;;
*) echo "An unexpected parsing error occurred"
echo
print_help
exit 4
;;
esac >&2 # print the ERROR MESSAGES to STDERR
done
shift $((OPTIND - 1))
if [ -z "$tab_file" ]
then
echo "# ERROR: no input tab file defined!"
print_help
exit 1
fi
if [ "$clust_stat" != "sil" ] && [ "$clust_stat" != "gap" ]
then
echo "# ERROR: goodness of clustering stats must be sil|gap"
print_help
exit 1
fi
if [ "$distance" != "gower" ] && [ "$distance" != "manhattan" ] && [ "$distance" != "euclidean" ]
then
echo "# ERROR: distances must be one of gower|manhattan|euclidean"
print_help
exit 1
fi
if [ -z "$DEBUG" ]
then
DEBUG=0
fi
if [ -z "$text" ]
then
text="$tab_file"
fi
if [ -n "$regex" ]
then
subset_matrix=1
fi
if [ "$gap_method" != "Tibs2001SEmax" ] && [ "$gap_method" != "firstSEmax" ] && [ "$gap_method" != "globalSEmax" ] && [ "$gap_method" != "firstmax" ] && [ "$gap_method" != "globalmax" ]
then
echo "ERROR: gat_metod must be one of: firstSEmax|Tibs2001SEmax|globalSEmax|firstmax|globalmax"
print_help
exit 1
fi
#-------------------#
#>>>>>> MAIN <<<<<<<#
#-------------------#
# 0) print run's parameter setup
wkdir=$(pwd)
cat << PARAMS
##############################################################################################
>>> $progname v$VERSION run started at $start_time
# General
working direcotry:$wkdir
input tab_file:$tab_file | regex:$regex
distance:$distance|hclustering_meth:$algorithm
# Heatmaps
cell_note:$cell_note
text:$text|margin_hor:$margin_hor|margin_vert:$margin_vert|points:$points
width:$width|height:$height|outformat:$outformat
angle:"$angle"|charExp:$charExp
# Goodnes of clustering stats
* gap satistic
n_start:$n_start|n_boot:$n_boot|gap_method:$gap_method
* gap and silhouette width
k:$k
##############################################################################################
PARAMS
# 1) prepare R's output file names
heatmap_outfile="hclust_${distance}-${algorithm}_${tab_file%.*}_heatmap.$outformat"
heatmap_outfile=${heatmap_outfile//\//_}
tree_file="hclust_${distance}-${algorithm}_${tab_file%.*}_tree.$outformat"
tree_file=${tree_file//\//_}
newick_file="hclust_${distance}-${algorithm}_${tab_file%.*}_tree.ph"
newick_file=${newick_file//\//_}
aRow=$(echo "$angle" | cut -d, -f1)
aCol=$(echo "$angle" | cut -d, -f2)
echo ">>> Plotting files $tree_file and $heatmap_outfile ..."
echo " this will take some time, please be patient ..."
echo
# 2) replace path with "Genome" in first col of 1st row of source $tab_file (pangenome_matrix_t0.tab)
perl -pe 's/^source\S+/Genome/' "$tab_file" | sed 's/\.f[an]a//g; s/\.gbk//g; s/-/_/g; s/__/_/g' > "${tab_file}ed"
# 3) call R using a heredoc and write the resulting script to file
R --no-save -q <<RCMD > "${progname%.*}"_script_run_at_"${start_time}".R
suppressPackageStartupMessages(library("gplots"))
library("cluster")
library("ape")
suppressPackageStartupMessages(library(dendextend))
suppressPackageStartupMessages(library(factoextra))
# 0.1 save original parameters
opar <- par(no.readonly = TRUE)
# 0.2 set options
options(expressions = 100000) #https://stat.ethz.ch/pipermail/r-help/2004-January/044109.html
# 1. read cleaned pan-genome matrix
table <- read.table(file="${tab_file}ed", header=TRUE, sep="\t")
# 2. Note that silhouette statistics are only defined if 2 <= k <= n -1 genomes
# so make sure the user provides a usable k or set it to maximum possible value automatically
n_tax <- dim(table)[1]
k <- $k
max_k <- n_tax -1
if( k >= n_tax) k <- max_k
# 3. remove the invariant (core-genome) columns
#cat("Removing invariant (core-genome) columns from ${tab_file} ...\n")
table <- table[sapply(table, function(x) length(unique(x))>1)]
write.table(table, file="pangenome_matrix_variable_sites_only.tsv", sep="\t",
row.names = FALSE)
# 4. filter rows with user-provided regex
if($subset_matrix > 0 ){
include_list <- grep("$regex", table\$Genome)
table <- table[include_list, ]
}
# for goodness of clustering stats we require a dfr without the strain names
# using good ol' base R to avoid more dependencies ... may enforce tydiverse in the future ...
# ... It is likely not wise to attempt escaping the gravity of the tidyverse ;)
# As a matter of fact, factoextra meakes use of ggplot2, a core tidyverse package.
#dfr.num <- table %>% select(2:dim(table)[2])
dfr.num <- table[,2:ncol(table)]
dfr.num <- droplevels.data.frame(dfr.num)
# 5.1 convert dfr.num to matrix
dfr.num.mat <- as.matrix(dfr.num)
# 5.2 add rownmaes to each matrix and dfr
genomes <- table\$Genome
rownames(dfr.num.mat) <- genomes
rownames(dfr.num) <- genomes
# 6.1 compute distances from the numeric matrix
my_dist <- suppressWarnings(daisy(dfr.num.mat, metric="$distance", stand=FALSE))
# 6.2 write the distance matrix to disk
write.table(as.matrix(my_dist), file="${distance}_dist_matrix.tab", row.names=TRUE, col.names=FALSE, sep="\t")
# 7.1 compute dendrograms and phylogenies using hclust and write Newick-formatted string to disk
dendro <- as.dendrogram(hclust(my_dist, method="$algorithm"))
nwk_tree <- as.phylo(hclust(my_dist, method="$algorithm"), hang=-1, main="$algorithm clustering with $distance dist", cex = $charExp)
write.tree(phy=nwk_tree, file="$newick_file")
# 7,2 plot the dendrogram
$outformat("$tree_file", width="$width", height="$height", pointsize=$points)
plot(hclust(my_dist, method="$algorithm"), hang=-1, main="$algorithm clustering with $distance dist", cex = $charExp)
dev.off()
# 8.1 Plot heatmaps without cell values
if($cell_note == 0){
$outformat(file="$heatmap_outfile", width=$width, height=$height, pointsize=$points)
heatmap.2(as.matrix(my_dist), main="$text $distance dist.", notecol="black", density.info="none", trace="none", dendrogram="row",
margins=c($margin_vert,$margin_hor), lhei = c(1,5),
cexRow=$charExp, cexCol=$charExp,
srtRow=$aRow, srtCol=$aCol)
dev.off()
}
# 8.2 Plot heatmaps with cell values
if($cell_note == 1){
$outformat(file="$heatmap_outfile", width=$width, height=$height, pointsize=$points)
heatmap.2(as.matrix(my_dist), cellnote=round(as.matrix(my_dist),$decimals), main="$text $distance dist.",
notecol="black", density.info="none", trace="none", dendrogram="row",
margins=c($margin_vert,$margin_hor), lhei = c(1,5),
cexRow=$charExp, cexCol=$charExp,
srtRow=$aRow, srtCol=$aCol)
dev.off()
}
# 9. compute goodness of clustering stats [gap|silhouette-width]
# 9.1 gap-statistic
if("$clust_stat" == "gap"){
# compute the gap_statistic using cluster::clusGap
gap_stat <- clusGap(dfr.num, diss = my_dist, FUN = hcut, nstart = $n_start, d.power = 2, K.max = k, B = $n_boot, method = "$gap_method")
# cluster::maxSE gets the optimal number of clusters;
gap_n_clust <- maxSE(gap_stat\$Tab[, "gap"], gap_stat\$Tab[, "SE.sim"], method = "$gap_method")
dend <- color_branches(dendro, k = gap_n_clust)
gap_plot_name <- paste("gap-statistic_plot_${algorithm}-${distance}", ".${outformat}", sep = "")
gap_stat_plot <- fviz_gap_stat(gap_stat, maxSE = list(method = "$gap_method", SE.factor= 1))
$outformat(gap_plot_name)
plot(gap_stat_plot)
dev.off()
# plot with clusters delimited by rectangles
gap_hc_plot_name <- paste("hcluster_${algorithm}-${distance}_cut_at_gap-stat_k", gap_n_clust, ".${outformat}", sep = "")
title <- paste("hc of pan-genome (${algorithm}-${distance}; gap-statistic: k = ", gap_n_clust, ")", sep="")
$outformat(gap_hc_plot_name)
par(mar=c(3,1,1,8))
#plot(d_plot)
#dend %>% set("branches_k_color", value = 3:gap_n_clust, k = gap_n_clust ) %>%
dend %>% set("branches_k_color", k = gap_n_clust ) %>%
set("labels_cex", c($charExp)) %>% plot(horiz = TRUE)
dend %>% rect.dendrogram(k = gap_n_clust, horiz = TRUE, border = 8, lty = 5, lwd = 1)
dev.off()
par(opar)
}
# 9.2 silhouette-width statistic
if("$clust_stat" == "sil"){
# compute the silhouette-width statistic using factoextra::fviz_nbclust
my_dist.nbc.sil <- fviz_nbclust(dfr.num, diss = my_dist, FUN = hcut, method = "silhouette", k.max = k)
# extract the number of optimal clusters:
sil_max <- max(my_dist.nbc.sil\$data\$y)
sil_n_clust <- as.integer(my_dist.nbc.sil\$data[my_dist.nbc.sil\$data\$y==sil_max,][1])
# use dendextend::color_branches
dend <- color_branches(dendro, k = sil_n_clust)
sil_plot_name <- paste("silhouette_width_statistic_plot_", "${algorithm}", "-", "$distance", ".${outformat}", sep = "")
$outformat(sil_plot_name)
plot(my_dist.nbc.sil)
dev.off()
sil_hc_plot_name <- paste("hcluster_", "${algorithm}", "-", "${distance}", "_cut_at_silhouette_mean_width_k", sil_n_clust, ".${outformat}", sep = "")
title <- paste("hc of pan-genome (", "${algorithm}", "-", "{$distance}", "; silhouette mean width: k = ", sil_n_clust, ")", sep="")
$outformat(sil_hc_plot_name)
par(mar=c(3,1,1,8))
#plot(d_plot)
#dend %>% set("branches_k_color", value = 3:sil_n_clust, k = sil_n_clust ) %>%
dend %>% set("branches_k_color", k = sil_n_clust ) %>%
set("labels_cex", c($charExp)) %>% plot(horiz = TRUE)
dend %>% rect.dendrogram(k = sil_n_clust, horiz = TRUE, border = 8, lty = 5, lwd = 1)
dev.off()
par(opar)
}
RCMD
# Check outputs
if [ -s "$tree_file" ]
then
echo ">>> File $tree_file was generated"
else
echo ">>> ERROR: File $tree_file was NOT generated!"
fi
if [ -s "${distance}"_dist_matrix.tab ]
then
echo ">>> File ${distance}_dist_matrix.tab was generated"
else
echo ">>> ERROR: File ${distance}_dist_matrix.tab was NOT generated!"
fi
if [ -s "$heatmap_outfile" ]
then
echo ">>> File $heatmap_outfile was generated"
else
echo ">>> ERROR: File $heatmap_outfile was NOT generated!"
fi
if [ -s "$newick_file" ]
then
echo ">>> File $newick_file was generated"
else
echo ">>> ERROR: File $newick_file was NOT generated!"
fi
if [[ "$clust_stat" =~ sil ]]
then
goodness_of_clust_plot=$(find . -name 'silhouette_width_statistic_plot*')
if [ -s "$goodness_of_clust_plot" ]
then
echo ">>> File $goodness_of_clust_plot was generated"
else
echo ">>> ERROR: File $goodness_of_clust_plot was NOT generated!"
fi
if ls ./*cut_at_silhouette_mean_width*."${outformat}" &> /dev/null;
then
dendro_cut_file=$( find . -maxdepth 1 -name "*cut_at_silhouette_mean_width*.${outformat}")
echo ">>> File $dendro_cut_file was generated"
else
echo ">>> ERROR: File $dendro_cut_file was NOT generated!"
fi
elif [[ "$clust_stat" =~ gap ]]
then
goodness_of_clust_plot=$(find . -name 'gap-statistic_plot*')
if [ -s "$goodness_of_clust_plot" ]
then
echo ">>> File $goodness_of_clust_plot was generated"
else
echo ">>> ERROR: File $goodness_of_clust_plot was NOT generated!"
fi
if ls ./*cut_at_gap-stat*."${outformat}" &> /dev/null;
then
dendro_cut_file=$( find . -maxdepth 1 -name "*cut_at_gap-stat*.${outformat}")
echo ">>> File $dendro_cut_file was generated"
else
echo ">>> ERROR: File $dendro_cut_file was NOT generated!"
fi
fi
# cleanup
cleanup_R_script "${progname%.*}_script_run_at_${start_time}.R"
[ -s "$R_script" ] && echo ">>> wrote $R_script"
[ -s Rplots.pdf ] && rm Rplots.pdf