-
Notifications
You must be signed in to change notification settings - Fork 1
/
ps_LST_spm_reslice.m
380 lines (339 loc) · 13.8 KB
/
ps_LST_spm_reslice.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
function ps_LST_spm_reslice(P,flags)
% Same as spm_reslice but without messages
% Rigid body reslicing of images
% FORMAT spm_reslice(P,flags)
%
% P - matrix or cell array of filenames {one string per row}
% All operations are performed relative to the first image.
% ie. Coregistration is to the first image, and resampling
% of images is into the space of the first image.
%
% flags - a structure containing various options. The fields are:
%
% mask - mask output images (true/false) [default: true]
% To avoid artifactual movement-related variance the
% realigned set of images can be internally masked, within
% the set (i.e. if any image has a zero value at a voxel
% than all images have zero values at that voxel). Zero
% values occur when regions 'outside' the image are moved
% 'inside' the image during realignment.
%
% mean - write mean image (true/false) [default: true]
% The average of all the realigned scans is written to
% an image file with 'mean' prefix.
%
% interp - the B-spline interpolation method [default: 1]
% Non-finite values result in Fourier interpolation. Note
% that Fourier interpolation only works for purely rigid
% body transformations. Voxel sizes must all be identical
% and isotropic.
%
% which - values of 0, 1 or 2 are allowed [default: 2]
% 0 - don't create any resliced images.
% Useful if you only want a mean resliced image.
% 1 - don't reslice the first image.
% The first image is not actually moved, so it may
% not be necessary to resample it.
% 2 - reslice all the images.
% If which is a 2-element vector, flags.mean will be set
% to flags.which(2).
%
% wrap - three values of either 0 or 1, representing wrapping in
% each of the dimensions. For fMRI, [1 1 0] would be used.
% For PET, it would be [0 0 0]. [default: [0 0 0]]
%
% prefix - prefix for resliced images [default: 'r']
%
%__________________________________________________________________________
%
% The spatially realigned images are written to the original subdirectory
% with the same (prefixed) filename. They are all aligned with the first.
%
% Inputs:
% A series of images conforming to SPM data format (see 'Data Format'). The
% relative displacement of the images is stored in their header.
%
% Outputs:
% The routine uses information in their headers and writes the realigned
% image files to the same subdirectory with a prefix.
%__________________________________________________________________________
% Copyright (C) 1999-2011 Wellcome Trust Centre for Neuroimaging
% John Ashburner
% $Id: spm_reslice.m 5929 2014-03-27 14:47:40Z guillaume $
%__________________________________________________________________________
%
% The headers of the images contain a 4x4 affine transformation matrix 'M',
% usually affected by the `realignment' and `coregistration' modules.
% What these matrices contain is a mapping from the voxel coordinates
% (x0,y0,z0) (where the first voxel is at coordinate (1,1,1)), to
% coordinates in millimeters (x1,y1,z1).
%
% x1 = M(1,1)*x0 + M(1,2)*y0 + M(1,3)*z0 + M(1,4)
% y1 = M(2,1)*x0 + M(2,2)*y0 + M(2,3)*z0 + M(2,4)
% z1 = M(3,1)*x0 + M(3,2)*y0 + M(3,3)*z0 + M(3,4)
%
% Assuming that image1 has a transformation matrix M1, and image2 has a
% transformation matrix M2, the mapping from image1 to image2 is: M2\M1
% (ie. from the coordinate system of image1 into millimeters, followed
% by a mapping from millimeters into the space of image2).
%
% Several spatial transformations (realignment, coregistration,
% normalisation) can be combined into a single operation (without the
% necessity of resampling the images several times).
%__________________________________________________________________________
%
% Refs:
%
% Friston KJ, Williams SR, Howard R Frackowiak RSJ and Turner R (1995)
% Movement-related effect in fMRI time-series. Mag. Res. Med. 35:346-355
%
% W. F. Eddy, M. Fitzgerald and D. C. Noll (1996) Improved Image
% Registration by Using Fourier Interpolation. Mag. Res. Med. 36(6):923-931
%
% R. W. Cox and A. Jesmanowicz (1999) Real-Time 3D Image Registration
% for Functional MRI. Mag. Res. Med. 42(6):1014-1018
%__________________________________________________________________________
SVNid = '$Rev: 5929 $';
%-Say hello
%--------------------------------------------------------------------------
%SPMid = spm('FnBanner',mfilename,SVNid);
%-Parameters
%--------------------------------------------------------------------------
if ~nargin || isempty(P), P = spm_select([2 Inf],'image'); end
if iscellstr(P), P = char(P); end
if ischar(P), P = spm_vol(P); end
def_flags = spm_get_defaults('realign.write');
def_flags.prefix = 'r';
if nargin < 2
flags = def_flags;
else
fnms = fieldnames(def_flags);
for i=1:length(fnms)
if ~isfield(flags,fnms{i})
flags.(fnms{i}) = def_flags.(fnms{i});
end
end
end
if numel(flags.which) == 2
flags.mean = flags.which(2);
flags.which = flags.which(1);
elseif ~isfield(flags,'mean')
flags.mean = 1;
end
%-Reslice
%--------------------------------------------------------------------------
reslice_images(P,flags);
%fprintf('%-40s: %30s\n','Completed',spm('time')) %-#
%==========================================================================
%-function reslice_images(P,flags)
%==========================================================================
function reslice_images(P,flags)
% Reslice images volume by volume
% FORMAT reslice_images(P,flags)
% See main function for a description of the input parameters
if ~isfinite(flags.interp), % Use Fourier method
% Check for non-rigid transformations in the matrixes
for i=1:numel(P)
pp = P(1).mat\P(i).mat;
if any(abs(svd(pp(1:3,1:3))-1)>1e-7)
fprintf('\n Zooms or shears appear to be needed');
fprintf('\n (probably due to non-isotropic voxels).');
fprintf('\n These can not yet be done using the');
fprintf('\n Fourier reslicing method. Switching to');
fprintf('\n 7th degree B-spline interpolation instead.\n\n');
flags.interp = 7;
break
end
end
end
if flags.mask || flags.mean
spm_progress_bar('Init',P(1).dim(3),'Computing available voxels','planes completed');
x1 = repmat((1:P(1).dim(1))',1,P(1).dim(2));
x2 = repmat( 1:P(1).dim(2) ,P(1).dim(1),1);
if flags.mean
Count = zeros(P(1).dim(1:3));
Integral = zeros(P(1).dim(1:3));
end
if flags.mask, msk = cell(P(1).dim(3),1); end;
for x3 = 1:P(1).dim(3)
tmp = zeros(P(1).dim(1:2));
for i = 1:numel(P)
tmp = tmp + getmask(inv(P(1).mat\P(i).mat),x1,x2,x3,P(i).dim(1:3),flags.wrap);
end
if flags.mask, msk{x3} = find(tmp ~= numel(P)); end;
if flags.mean, Count(:,:,x3) = tmp; end;
spm_progress_bar('Set',x3);
end
end
nread = numel(P);
if ~flags.mean
if flags.which == 1, nread = nread - 1; end;
if flags.which == 0, nread = 0; end;
end
spm_progress_bar('Init',nread,'Reslicing','volumes completed');
[x1,x2] = ndgrid(1:P(1).dim(1),1:P(1).dim(2));
nread = 0;
d = [flags.interp*[1 1 1]' flags.wrap(:)];
for i = 1:numel(P)
if (i>1 && flags.which==1) || flags.which==2
write_vol = 1;
else
write_vol = 0;
end
if write_vol || flags.mean
read_vol = 1;
else
read_vol = 0;
end
if read_vol
if ~isfinite(flags.interp)
v = abs(kspace3d(spm_bsplinc(P(i),[0 0 0 ; 0 0 0]'),P(1).mat\P(i).mat));
for x3 = 1:P(1).dim(3)
if flags.mean
Integral(:,:,x3) = ...
Integral(:,:,x3) + ...
nan2zero(v(:,:,x3) .* ...
getmask(inv(P(1).mat\P(i).mat),x1,x2,x3,P(i).dim(1:3),flags.wrap));
end
if flags.mask
tmp = v(:,:,x3); tmp(msk{x3}) = NaN; v(:,:,x3) = tmp;
end
end
else
C = spm_bsplinc(P(i), d);
v = zeros(P(1).dim);
for x3 = 1:P(1).dim(3)
[tmp,y1,y2,y3] = getmask(inv(P(1).mat\P(i).mat),x1,x2,x3,P(i).dim(1:3),flags.wrap);
v(:,:,x3) = spm_bsplins(C, y1,y2,y3, d);
% v(~tmp) = 0;
if flags.mean
Integral(:,:,x3) = Integral(:,:,x3) + nan2zero(v(:,:,x3));
end
if flags.mask
tmp = v(:,:,x3); tmp(msk{x3}) = NaN; v(:,:,x3) = tmp;
end
end
end
if write_vol
VO = P(i);
VO.fname = spm_file(P(i).fname, 'prefix',flags.prefix);
VO.dim = P(1).dim(1:3);
VO.dt = P(i).dt;
VO.pinfo = P(i).pinfo;
VO.mat = P(1).mat;
VO.descrip = 'spm - realigned';
VO = spm_write_vol(VO,v);
end
nread = nread + 1;
end
spm_progress_bar('Set',nread);
end
if flags.mean
% Write integral image (16 bit signed)
%----------------------------------------------------------------------
Integral = Integral./Count;
PO = P(1);
PO.fname = spm_file(P(1).fname, 'prefix','mean');
PO = rmfield(PO,'pinfo');
PO.pinfo = [max(max(max(Integral)))/32767 0 0]';
PO.n = [1 1];
PO.descrip = 'spm - mean image';
PO.dt = [spm_type('int16') spm_platform('bigend')];
spm_write_vol(PO,Integral);
end
spm_progress_bar('Clear');
%==========================================================================
%-function v = kspace3d(v,M)
%==========================================================================
function v = kspace3d(v,M)
% 3D rigid body transformation performed as shears in 1D Fourier space
% FORMAT v = kspace3d(v,M)
% v - image stored as a 3D array
% M - rigid body transformation matrix
%
% v - transformed image
%
% References:
% R. W. Cox and A. Jesmanowicz (1999)
% Real-Time 3D Image Registration for Functional MRI
% Magnetic Resonance in Medicine 42(6):1014-1018
%
% W. F. Eddy, M. Fitzgerald and D. C. Noll (1996)
% Improved Image Registration by Using Fourier Interpolation
% Magnetic Resonance in Medicine 36(6):923-931
[S0,S1,S2,S3] = shear_decomp(M);
d = [size(v) 1 1 1];
g = 2.^ceil(log2(d));
if any(g~=d)
tmp = v;
v = zeros(g);
v(1:d(1),1:d(2),1:d(3)) = tmp;
clear tmp;
end
% XY-shear
tmp1 = -sqrt(-1)*2*pi*([0:((g(3)-1)/2) 0 (-g(3)/2+1):-1])/g(3);
for j=1:g(2)
t = reshape( exp((j*S3(3,2) + S3(3,1)*(1:g(1)) + S3(3,4)).'*tmp1) ,[g(1) 1 g(3)]);
v(:,j,:) = real(ifft(fft(v(:,j,:),[],3).*t,[],3));
end
% XZ-shear
tmp1 = -sqrt(-1)*2*pi*([0:((g(2)-1)/2) 0 (-g(2)/2+1):-1])/g(2);
for k=1:g(3)
t = exp( (k*S2(2,3) + S2(2,1)*(1:g(1)) + S2(2,4)).'*tmp1);
v(:,:,k) = real(ifft(fft(v(:,:,k),[],2).*t,[],2));
end
% YZ-shear
tmp1 = -sqrt(-1)*2*pi*([0:((g(1)-1)/2) 0 (-g(1)/2+1):-1])/g(1);
for k=1:g(3)
t = exp( tmp1.'*(k*S1(1,3) + S1(1,2)*(1:g(2)) + S1(1,4)));
v(:,:,k) = real(ifft(fft(v(:,:,k),[],1).*t,[],1));
end
% XY-shear
tmp1 = -sqrt(-1)*2*pi*([0:((g(3)-1)/2) 0 (-g(3)/2+1):-1])/g(3);
for j=1:g(2)
t = reshape( exp( (j*S0(3,2) + S0(3,1)*(1:g(1)) + S0(3,4)).'*tmp1) ,[g(1) 1 g(3)]);
v(:,j,:) = real(ifft(fft(v(:,j,:),[],3).*t,[],3));
end
if any(g~=d), v = v(1:d(1),1:d(2),1:d(3)); end
%==========================================================================
%-function [S0,S1,S2,S3] = shear_decomp(A)
%==========================================================================
function [S0,S1,S2,S3] = shear_decomp(A)
% Decompose rotation and translation matrix A into shears S0, S1, S2 and
% S3, such that A = S0*S1*S2*S3. The original procedure is documented in:
% R. W. Cox and A. Jesmanowicz (1999)
% Real-Time 3D Image Registration for Functional MRI
% Magnetic Resonance in Medicine 42(6):1014-1018
A0 = A(1:3,1:3);
if any(abs(svd(A0)-1)>1e-7), error('Can''t decompose matrix'); end
t = A0(2,3); if t==0, t=eps; end
a0 = pinv(A0([1 2],[2 3])')*[(A0(3,2)-(A0(2,2)-1)/t) (A0(3,3)-1)]';
S0 = [1 0 0; 0 1 0; a0(1) a0(2) 1];
A1 = S0\A0; a1 = pinv(A1([2 3],[2 3])')*A1(1,[2 3])'; S1 = [1 a1(1) a1(2); 0 1 0; 0 0 1];
A2 = S1\A1; a2 = pinv(A2([1 3],[1 3])')*A2(2,[1 3])'; S2 = [1 0 0; a2(1) 1 a2(2); 0 0 1];
A3 = S2\A2; a3 = pinv(A3([1 2],[1 2])')*A3(3,[1 2])'; S3 = [1 0 0; 0 1 0; a3(1) a3(2) 1];
s3 = A(3,4)-a0(1)*A(1,4)-a0(2)*A(2,4);
s1 = A(1,4)-a1(1)*A(2,4);
s2 = A(2,4);
S0 = [[S0 [0 0 s3]'];[0 0 0 1]];
S1 = [[S1 [s1 0 0]'];[0 0 0 1]];
S2 = [[S2 [0 s2 0]'];[0 0 0 1]];
S3 = [[S3 [0 0 0]'];[0 0 0 1]];
%==========================================================================
%-function [Mask,y1,y2,y3] = getmask(M,x1,x2,x3,dim,wrp)
%==========================================================================
function [Mask,y1,y2,y3] = getmask(M,x1,x2,x3,dim,wrp)
tiny = 5e-2; % From spm_vol_utils.c
y1 = M(1,1)*x1+M(1,2)*x2+(M(1,3)*x3+M(1,4));
y2 = M(2,1)*x1+M(2,2)*x2+(M(2,3)*x3+M(2,4));
y3 = M(3,1)*x1+M(3,2)*x2+(M(3,3)*x3+M(3,4));
Mask = true(size(y1));
if ~wrp(1), Mask = Mask & (y1 >= (1-tiny) & y1 <= (dim(1)+tiny)); end
if ~wrp(2), Mask = Mask & (y2 >= (1-tiny) & y2 <= (dim(2)+tiny)); end
if ~wrp(3), Mask = Mask & (y3 >= (1-tiny) & y3 <= (dim(3)+tiny)); end
%==========================================================================
%-function vo = nan2zero(vi)
%==========================================================================
function vo = nan2zero(vi)
vo = vi;
vo(~isfinite(vo)) = 0;