forked from LukasSMueller/FaceReconstructionCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_vgg16.py
74 lines (58 loc) · 2.54 KB
/
custom_vgg16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os, sys, inspect
# Suppress some level of logs
os.environ['TF_CPP_MIN_VLOG_LEVEL'] = '3'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import numpy as np
import time
from tensorflow_vgg import vgg16
from tensorflow import logging
logging.set_verbosity(logging.FATAL)
VGG_MEAN = [103.939, 116.779, 123.68]
def loadWeightsData(vgg16_npy_path=None):
if vgg16_npy_path is None:
path = inspect.getfile(Vgg16)
path = os.path.abspath(os.path.join(path, os.pardir))
path = os.path.join(path, "vgg16.npy")
vgg16_npy_path = path
print (vgg16_npy_path)
return np.load(vgg16_npy_path, encoding='latin1').item()
class custom_Vgg16(vgg16.Vgg16):
# Input should be an rgb image [batch, height, width, 3]
# values scaled [0, 1]
def __init__(self, rgb, data_dict, train=False):
# It's a shared weights data and used in various
# member functions.
self.data_dict = data_dict
# start_time = time.time()
print ("build model started")
# rgb_scaled = rgb * 255.0
rgb_scaled = rgb
# Convert RGB to BGR
red, green, blue = tf.split(rgb_scaled, 3, 3)
bgr = tf.concat([blue - VGG_MEAN[0],
green - VGG_MEAN[1],
red - VGG_MEAN[2]],
3)
self.conv1_1 = self.conv_layer(bgr, "conv1_1")
self.conv1_2 = self.conv_layer(self.conv1_1, "conv1_2")
self.pool1 = self.max_pool(self.conv1_2, 'pool1')
self.conv2_1 = self.conv_layer(self.pool1, "conv2_1")
self.conv2_2 = self.conv_layer(self.conv2_1, "conv2_2")
self.pool2 = self.max_pool(self.conv2_2, 'pool2')
self.conv3_1 = self.conv_layer(self.pool2, "conv3_1")
self.conv3_2 = self.conv_layer(self.conv3_1, "conv3_2")
self.conv3_3 = self.conv_layer(self.conv3_2, "conv3_3")
self.pool3 = self.max_pool(self.conv3_3, 'pool3')
self.conv4_1 = self.conv_layer(self.pool3, "conv4_1")
self.conv4_2 = self.conv_layer(self.conv4_1, "conv4_2")
self.conv4_3 = self.conv_layer(self.conv4_2, "conv4_3")
self.pool4 = self.max_pool(self.conv4_3, 'pool4')
self.conv5_1 = self.conv_layer(self.pool4, "conv5_1")
self.conv5_2 = self.conv_layer(self.conv5_1, "conv5_2")
self.conv5_3 = self.conv_layer(self.conv5_2, "conv5_3")
self.pool5 = self.max_pool(self.conv5_3, 'pool5')
# self.data_dict = None
# print ("build model finished: %ds" % (time.time() - start_time))
def debug(self):
pass