forked from samgale/Masking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTaskControl.py
438 lines (364 loc) · 17.7 KB
/
TaskControl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# -*- coding: utf-8 -*-
"""
Superclass for behavioral task control
"""
from __future__ import division
import math, os, time
import h5py
import numpy as np
from psychopy import monitors, visual, event
from psychopy.visual.windowwarp import Warper
import nidaqmx
class TaskControl():
def __init__(self,rigName):
assert(rigName in ('pilot','box5','sam'))
self.rigName = rigName
self.subjectName = None
self.saveParams = True # if True, saves all attributes not starting with underscore
self.saveFrameIntervals = True
self.drawDiodeBox = True
self.monBackgroundColor = 0
self.wheelRadius = 30.0 # mm
self.minWheelAngleChange = 0 # radians per frame
self.maxWheelAngleChange = 0.5 # radians per frame
self.rewardsEnabled = True
self.spacebarRewardsEnabled = True
self.solenoidOpenTime = 0.05 # seconds
if self.rigName=='pilot':
self.saveDir = r'C:\Users\SVC_CCG\Desktop\Data' # path where parameters and data saved
self.screen = 1 # monitor to present stimuli on
self.monWidth = 53.34 # cm
self.monDistance = 21.59 # cm
self.monGamma = 2.3 # float or None
self.monSizePix = (1920,1080)
self.flipScreenHorz = False
self.warp = None # 'spherical', 'cylindrical', 'warpfile', None
self.warpFile = None
self.diodeBoxSize = 50
self.diodeBoxPosition = (935,-515)
self.wheelPolarity = -1
self.nidaqDevices = ('USB-6001','USB-6001')
self.nidaqDeviceNames = ('Dev1','Dev2')
elif self.rigName=='box5':
self.saveDir = r'C:\Users\svc_ccg\Documents\Data'
self.screen = 0 # monitor to present stimuli on
self.monWidth = 50.8 # cm
self.monDistance = 21.6 # cm
self.monGamma = 2.1 # float or None
self.monSizePix = (1920,1080)
self.flipScreenHorz = False
self.warp = None # 'spherical', 'cylindrical', 'warpfile', None
self.warpFile = None
self.diodeBoxSize = 50
self.diodeBoxPosition = (935,-515)
self.wheelPolarity = -1
self.nidaqDevices = ('USB-6001',)
self.nidaqDeviceNames = ('Dev1',)
elif self.rigName=='sam':
self.saveDir = r'C:\Users\svc_ccg\Desktop\Data'
self.screen = 0 # monitor to present stimuli on
self.monWidth = 53.34 # cm
self.monDistance = 21.59 # cm
self.monGamma = 2.1 # float or None
self.monSizePix = (1920,1080)
self.flipScreenHorz = False
self.warp = None # 'spherical', 'cylindrical', 'warpfile', None
self.warpFile = None
self.drawDiodeBox = False
self.wheelPolarity = 1
self.nidaqDevices = ('USB-6009',)
self.nidaqDeviceNames = ('Dev1',)
self.rewardsEnabled = False
def prepareSession(self):
self._win = None
self._nidaqTasks = []
startTime = time.localtime()
self.startTime = time.strftime('%Y%m%d_%H%M%S',startTime)
print('start time was: ' + time.strftime('%I:%M',startTime))
self.pixelsPerDeg = 0.5 * self.monSizePix[0] / math.degrees(math.atan(0.5 * self.monWidth / self.monDistance))
self.prepareWindow()
if self.drawDiodeBox:
self._diodeBox = visual.Rect(self._win,
units='pix',
width=self.diodeBoxSize,
height=self.diodeBoxSize,
lineColor=0,
fillColor=1,
pos=self.diodeBoxPosition)
self._keys = [] # list of keys pressed since previous frame
self._mouse = event.Mouse(win=self._win)
self.startNidaqDevice()
self.rotaryEncoderRadians = []
self.deltaWheelPos = [] # change in wheel position (angle translated to screen pixels)
self.lickFrames = []
self._continueSession = True
self._sessionFrame = 0 # index of frame since start of session
self._trialFrame = 0 # index of frame since start of trial
self._reward = False # reward delivered at next frame flip if True
self.rewardFrames = [] # index of frames at which reward delivered
self.manualRewardFrames = [] # index of frames at which reward manually delivered
self.rewardSize = [] # size (solenoid open time) of each reward
self._tone = False # tone triggered at next frame flip if True
self._noise = False # noise triggered at next frame flip if True
self._opto = False # False or dictionary of params for optoPulse at next frame flip
def prepareWindow(self):
self._mon = monitors.Monitor('monitor1',
width=self.monWidth,
distance=self.monDistance,
gamma=self.monGamma)
self._mon.setSizePix(self.monSizePix)
self._mon.saveMon()
self._win = visual.Window(monitor=self._mon,
screen=self.screen,
fullscr=True,
flipHorizontal=self.flipScreenHorz,
units='pix',
color=self.monBackgroundColor)
self._warper = Warper(self._win,warp=self.warp,warpfile=self.warpFile)
for _ in range(10):
self._win.flip()
self._win.setRecordFrameIntervals(self.saveFrameIntervals)
def start(self,subjectName=None):
try:
if subjectName is not None:
self.subjectName = str(subjectName)
self.prepareSession()
self.taskFlow()
except:
raise
finally:
self.completeSession()
def taskFlow(self):
# override this method in subclass
while self._continueSession:
# get rotary encoder and digital input states
self.getNidaqData()
# do stuff, for example:
# check for licks and/or wheel movement
# update/draw stimuli
self.showFrame()
def showFrame(self):
self._frameSignalOutput.write(True)
# spacebar delivers reward
# escape key ends session
self._keys = event.getKeys()
if self.spacebarRewardsEnabled and 'space' in self._keys and not self._reward:
self._reward = self.solenoidOpenTime
self.manualRewardFrames.append(self._sessionFrame)
if 'escape' in self._keys:
self._continueSession = False
if self._tone:
self._toneOutput.write(True)
elif self._noise:
self._noiseOutput.write(True)
# show new frame
if self.drawDiodeBox:
self._diodeBox.fillColor = -self._diodeBox.fillColor
self._diodeBox.draw()
self._win.flip()
self._frameSignalOutput.write(False)
if self._opto:
self.optoPulse(**self._opto)
self._opto = False
if self._reward and self.rewardsEnabled:
self.triggerReward(self._reward)
self.rewardFrames.append(self._sessionFrame)
self.rewardSize.append(self._reward)
self._reward = False
if self._tone:
self._toneOutput.write(False)
self._tone = False
elif self._noise:
self._noiseOutput.write(False)
self._noise = False
self._sessionFrame += 1
self._trialFrame += 1
def completeSession(self):
try:
if self._win is not None:
self._win.close()
self.stopNidaqDevice()
except:
raise
finally:
if self.saveParams:
subjName = '' if self.subjectName is None else self.subjectName + '_'
filePath = os.path.join(self.saveDir,self.__class__.__name__ + '_' + subjName + self.startTime)
fileOut = h5py.File(filePath+'.hdf5','w')
saveParameters(fileOut,self.__dict__)
if self.saveFrameIntervals and self._win is not None:
fileOut.create_dataset('frameIntervals',data=self._win.frameIntervals)
fileOut.close()
def startNidaqDevice(self):
# Dev1 analog inputs
# AI0: rotary encoder
aiSampleRate = 2000 if self._win.monitorFramePeriod < 0.0125 else 1000
aiBufferSize = 16
self._rotaryEncoderInput = nidaqmx.Task()
self._rotaryEncoderInput.ai_channels.add_ai_voltage_chan(self.nidaqDeviceNames[0]+'/ai0',min_val=0,max_val=5)
self._rotaryEncoderInput.timing.cfg_samp_clk_timing(aiSampleRate,
sample_mode=nidaqmx.constants.AcquisitionType.CONTINUOUS,
samps_per_chan=aiBufferSize)
def readRotaryEncoderBuffer(task_handle,every_n_samples_event_type,number_of_samples,callback_data):
self._rotaryEncoderData = self._rotaryEncoderInput.read(number_of_samples_per_channel=number_of_samples)
return 0
self._rotaryEncoderInput.register_every_n_samples_acquired_into_buffer_event(aiBufferSize,readRotaryEncoderBuffer)
self._rotaryEncoderData = None
self._rotaryEncoderInput.start()
self._nidaqTasks.append(self._rotaryEncoderInput)
# Dev1 analog outputs
# AO0: water reward solenoid
if self.nidaqDevices[0]=='USB-6001':
aoSampleRate = 1000
self._rewardOutput = nidaqmx.Task()
self._rewardOutput.ao_channels.add_ao_voltage_chan(self.nidaqDeviceNames[0]+'/ao0',min_val=0,max_val=5)
self._rewardOutput.write(0)
self._rewardOutput.timing.cfg_samp_clk_timing(aoSampleRate)
self._nidaqTasks.append(self._rewardOutput)
# Dev2 analog outputs
# AO0: led1
# AO1: led2
if len(self.nidaqDevices)>1 and self.nidaqDevices[1]=='USB-6001':
self._optoOutput = nidaqmx.Task()
self._optoOutput.ao_channels.add_ao_voltage_chan(self.nidaqDeviceNames[1]+'/ao0:1',min_val=0,max_val=5)
self._optoOutput.write([0,0])
self._optoAmp = 0
self._optoOutput.timing.cfg_samp_clk_timing(aoSampleRate)
self._nidaqTasks.append(self._optoOutput)
# Dev1 digital inputs (port 0)
# line 0.0: lick input
self._lickInput = nidaqmx.Task()
self._lickInput.di_channels.add_di_chan(self.nidaqDeviceNames[0]+'/port0/line0',
line_grouping=nidaqmx.constants.LineGrouping.CHAN_PER_LINE)
self._nidaqTasks.append(self._lickInput)
# Dev1 digital outputs (port 1)
# line 1.0: frame signal
self._frameSignalOutput = nidaqmx.Task()
self._frameSignalOutput.do_channels.add_do_chan(self.nidaqDeviceNames[0]+'/port1/line0',
line_grouping=nidaqmx.constants.LineGrouping.CHAN_PER_LINE)
self._frameSignalOutput.write(False)
self._nidaqTasks.append(self._frameSignalOutput)
# line 1.1: tone trigger
self._toneOutput = nidaqmx.Task()
self._toneOutput.do_channels.add_do_chan(self.nidaqDeviceNames[0]+'/port1/line1',
line_grouping=nidaqmx.constants.LineGrouping.CHAN_PER_LINE)
self._toneOutput.write(False)
self._nidaqTasks.append(self._toneOutput)
# line 1.2: noise trigger
self._noiseOutput = nidaqmx.Task()
self._noiseOutput.do_channels.add_do_chan(self.nidaqDeviceNames[0]+'/port1/line2',
line_grouping=nidaqmx.constants.LineGrouping.CHAN_PER_LINE)
self._noiseOutput.write(False)
self._nidaqTasks.append(self._noiseOutput)
def stopNidaqDevice(self):
if getattr(self,'_optoAmp',0):
self.optoOff()
for task in self._nidaqTasks:
task.close()
def openSolenoid(self):
self._solenoid = nidaqmx.Task()
self._solenoid.ao_channels.add_ao_voltage_chan(self.nidaqDeviceNames[0]+'/ao0',min_val=0,max_val=5)
self._solenoid.write(5)
def closeSolenoid(self):
if getattr(self,'_solenoid',0):
self._solenoid.write(0)
self._solenoid.stop()
self._solenoid.close()
self._solenoid = None
def waterTest(self,numPulses=100,pulseInterval=240):
try:
self.prepareSession()
while self._continueSession:
if self._sessionFrame > 0 and not self._sessionFrame % pulseInterval:
if len(self.rewardFrames) < numPulses:
self._reward = self.solenoidOpenTime
else:
self._continueSession = False
self.showFrame()
except:
raise
finally:
self.completeSession()
def triggerReward(self,openTime):
sampleRate = self._rewardOutput.timing.samp_clk_rate
nSamples = int(openTime * sampleRate) + 1
s = np.zeros(nSamples)
s[:-1] = 5
self._rewardOutput.stop()
self._rewardOutput.timing.samp_quant_samp_per_chan = nSamples
self._rewardOutput.write(s,auto_start=True)
def optoOn(self,ch=[0,1],amp=5,ramp=0):
self.optoPulse(ch,amp,onRamp=ramp,lastVal=amp)
def optoOff(self,ch=[0,1],ramp=0):
amp = self._optoAmp if ramp > 0 else 0
self.optoPulse(ch,amp,offRamp=ramp)
def optoPulse(self,ch=[0,1],amp=5,dur=0,onRamp=0,offRamp=0,lastVal=0):
sampleRate = self._optoOutput.timing.samp_clk_rate
nSamples = int((dur + onRamp + offRamp) * sampleRate) + 1
if nSamples < 2:
nSamples = 2
pulse = np.zeros((2,nSamples))
pulse[ch,:-1] = amp
pulse[ch,-1] = lastVal
if onRamp > 0:
ramp = np.linspace(0,amp,int(onRamp * sampleRate))
pulse[ch,:ramp.size] = ramp
if offRamp > 0:
ramp = np.linspace(amp,0,int(offRamp * sampleRate))
pulse[ch,-(ramp.size+1):-1] = ramp
self._optoOutput.stop()
self._optoOutput.timing.samp_quant_samp_per_chan = nSamples
self._optoOutput.write(pulse,auto_start=True)
self._optoAmp = lastVal
def getNidaqData(self):
# analog
if self._rotaryEncoderData is None:
encoderAngle = np.nan
else:
encoderData = np.array(self._rotaryEncoderData)
encoderData *= 2 * math.pi / 5
encoderAngle = np.arctan2(np.mean(np.sin(encoderData)),np.mean(np.cos(encoderData)))
self.rotaryEncoderRadians.append(encoderAngle)
self.deltaWheelPos.append(self.calculateWheelChange())
# digital
if self._lickInput.read():
self.lickFrames.append(self._sessionFrame)
def calculateWheelChange(self):
# calculate angular change in wheel position
if len(self.rotaryEncoderRadians) < 2 or np.isnan(self.rotaryEncoderRadians[-1]):
angleChange = 0
else:
angleChange = self.rotaryEncoderRadians[-1] - self.rotaryEncoderRadians[-2]
if angleChange < -math.pi:
angleChange += 2 * math.pi
elif angleChange > math.pi:
angleChange -= 2 * math.pi
if self.minWheelAngleChange < abs(angleChange) < self.maxWheelAngleChange:
angleChange *= self.wheelPolarity
else:
angleChange = 0
return angleChange
def saveParameters(fileOut,paramDict,dictName=None):
for key,val in paramDict.items():
if key[0] != '_':
if dictName is None:
paramName = key
else:
paramName = dictName+'_'+key
if isinstance(val,dict):
saveParameters(fileOut,val,paramName)
else:
if val is None:
val = np.nan
try:
if isinstance(val,(list,tuple)) and all(isinstance(v,str) for v in val):
fileOut.create_dataset(paramName,data=np.array(val,dtype=object),dtype=h5py.special_dtype(vlen=str))
else:
try:
fileOut.create_dataset(paramName,data=val)
except:
fileOut.create_dataset(paramName,data=np.array(val,dtype=object),dtype=h5py.special_dtype(vlen=float))
except:
print('\n' + 'could not save ' + key)
if __name__ == "__main__":
pass