-
Notifications
You must be signed in to change notification settings - Fork 422
/
frequencies.c
250 lines (210 loc) · 7.02 KB
/
frequencies.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/* Copyright 2023 Dual Tachyon
* https://github.com/DualTachyon
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "frequencies.h"
#include "misc.h"
#include "settings.h"
#include <assert.h>
// the BK4819 has 2 bands it covers, 18MHz ~ 630MHz and 760MHz ~ 1300MHz
#define BX4819_band1_lower 1800000
#define BX4819_band2_upper 130000000
const freq_band_table_t BX4819_band1 = {BX4819_band1_lower, 63000000};
const freq_band_table_t BX4819_band2 = {84000000, BX4819_band2_upper};
const freq_band_table_t frequencyBandTable[] =
{
#ifndef ENABLE_WIDE_RX
// QS original
[BAND1_50MHz ]={.lower = 5000000, .upper = 7600000},
[BAND7_470MHz]={.lower = 47000000, .upper = 60000000},
#else
// extended range
[BAND1_50MHz ]={.lower = BX4819_band1_lower, .upper = 10800000},
[BAND7_470MHz]={.lower = 47000000, .upper = BX4819_band2_upper},
#endif
[BAND2_108MHz]={.lower = 10800000, .upper = 13700000},
[BAND3_137MHz]={.lower = 13700000, .upper = 17400000},
[BAND4_174MHz]={.lower = 17400000, .upper = 35000000},
[BAND5_350MHz]={.lower = 35000000, .upper = 40000000},
[BAND6_400MHz]={.lower = 40000000, .upper = 47000000}
};
#ifdef ENABLE_NOAA
const uint32_t NoaaFrequencyTable[10] =
{
16255000,
16240000,
16247500,
16242500,
16245000,
16250000,
16252500,
16152500,
16177500,
16327500
};
#endif
// this order of steps has to be preserved for backwards compatibility with other/stock firmwares
const uint16_t gStepFrequencyTable[] = {
// standard steps
[STEP_2_5kHz] = 250,
[STEP_5kHz] = 500,
[STEP_6_25kHz] = 625,
[STEP_10kHz] = 1000,
[STEP_12_5kHz] = 1250,
[STEP_25kHz] = 2500,
[STEP_8_33kHz] = 833,
// custom steps
[STEP_0_01kHz] = 1,
[STEP_0_05kHz] = 5,
[STEP_0_1kHz] = 10,
[STEP_0_25kHz] = 25,
[STEP_0_5kHz] = 50,
[STEP_1kHz] = 100,
[STEP_1_25kHz] = 125,
[STEP_9kHz] = 900,
[STEP_15kHz] = 1500,
[STEP_20kHz] = 2000,
[STEP_30kHz] = 3000,
[STEP_50kHz] = 5000,
[STEP_100kHz] = 10000,
[STEP_125kHz] = 12500,
[STEP_200kHz] = 20000,
[STEP_250kHz] = 25000,
[STEP_500kHz] = 50000
};
const STEP_Setting_t StepSortedIndexes[] = {
STEP_0_01kHz, STEP_0_05kHz, STEP_0_1kHz, STEP_0_25kHz, STEP_0_5kHz, STEP_1kHz, STEP_1_25kHz, STEP_2_5kHz, STEP_5kHz, STEP_6_25kHz,
STEP_8_33kHz, STEP_9kHz, STEP_10kHz, STEP_12_5kHz, STEP_15kHz, STEP_20kHz, STEP_25kHz, STEP_30kHz, STEP_50kHz, STEP_100kHz,
STEP_125kHz, STEP_200kHz, STEP_250kHz, STEP_500kHz
};
STEP_Setting_t FREQUENCY_GetStepIdxFromSortedIdx(uint8_t sortedIdx)
{
return StepSortedIndexes[sortedIdx];
}
uint32_t FREQUENCY_GetSortedIdxFromStepIdx(uint8_t stepIdx)
{
for(uint8_t i = 0; i < ARRAY_SIZE(gStepFrequencyTable); i++)
if(StepSortedIndexes[i] == stepIdx)
return i;
return 0;
}
static_assert(ARRAY_SIZE(gStepFrequencyTable) == STEP_N_ELEM);
FREQUENCY_Band_t FREQUENCY_GetBand(uint32_t Frequency)
{
for (int32_t band = BAND_N_ELEM - 1; band >= 0; band--)
if (Frequency >= frequencyBandTable[band].lower)
return (FREQUENCY_Band_t)band;
return BAND1_50MHz;
}
uint8_t FREQUENCY_CalculateOutputPower(uint8_t TxpLow, uint8_t TxpMid, uint8_t TxpHigh, int32_t LowerLimit, int32_t Middle, int32_t UpperLimit, int32_t Frequency)
{
if (Frequency <= LowerLimit)
return TxpLow;
if (UpperLimit <= Frequency)
return TxpHigh;
if (Frequency <= Middle)
{
TxpMid += ((TxpMid - TxpLow) * (Frequency - LowerLimit)) / (Middle - LowerLimit);
return TxpMid;
}
TxpMid += ((TxpHigh - TxpMid) * (Frequency - Middle)) / (UpperLimit - Middle);
return TxpMid;
}
uint32_t FREQUENCY_RoundToStep(uint32_t freq, uint16_t step)
{
if(step == 833) {
uint32_t base = freq/2500*2500;
int chno = (freq - base) / 700; // convert entered aviation 8.33Khz channel number scheme to actual frequency.
return base + (chno * 833) + (chno == 3);
}
if(step == 1)
return freq;
if(step >= 1000)
step = step/2;
return (freq + (step + 1) / 2) / step * step;
}
int32_t TX_freq_check(const uint32_t Frequency)
{ // return '0' if TX frequency is allowed
// otherwise return '-1'
if (Frequency < frequencyBandTable[0].lower || Frequency > frequencyBandTable[BAND_N_ELEM - 1].upper)
return 1; // not allowed outside this range
if (Frequency >= BX4819_band1.upper && Frequency < BX4819_band2.lower)
return -1; // BX chip does not work in this range
switch (gSetting_F_LOCK)
{
case F_LOCK_DEF:
if (Frequency >= frequencyBandTable[BAND3_137MHz].lower && Frequency < frequencyBandTable[BAND3_137MHz].upper)
return 0;
if (Frequency >= frequencyBandTable[BAND4_174MHz].lower && Frequency < frequencyBandTable[BAND4_174MHz].upper)
if (gSetting_200TX)
return 0;
if (Frequency >= frequencyBandTable[BAND5_350MHz].lower && Frequency < frequencyBandTable[BAND5_350MHz].upper)
if (gSetting_350TX && gSetting_350EN)
return 0;
if (Frequency >= frequencyBandTable[BAND6_400MHz].lower && Frequency < frequencyBandTable[BAND6_400MHz].upper)
return 0;
if (Frequency >= frequencyBandTable[BAND7_470MHz].lower && Frequency <= 60000000)
if (gSetting_500TX)
return 0;
break;
case F_LOCK_FCC:
if (Frequency >= 14400000 && Frequency < 14800000)
return 0;
if (Frequency >= 42000000 && Frequency < 45000000)
return 0;
break;
case F_LOCK_CE:
if (Frequency >= 14400000 && Frequency < 14600000)
return 0;
if (Frequency >= 43000000 && Frequency < 44000000)
return 0;
break;
case F_LOCK_GB:
if (Frequency >= 14400000 && Frequency < 14800000)
return 0;
if (Frequency >= 43000000 && Frequency < 44000000)
return 0;
break;
case F_LOCK_430:
if (Frequency >= frequencyBandTable[BAND3_137MHz].lower && Frequency < 17400000)
return 0;
if (Frequency >= 40000000 && Frequency < 43000000)
return 0;
break;
case F_LOCK_438:
if (Frequency >= frequencyBandTable[BAND3_137MHz].lower && Frequency < 17400000)
return 0;
if (Frequency >= 40000000 && Frequency < 43800000)
return 0;
break;
case F_LOCK_ALL:
break;
case F_LOCK_NONE:
for (uint32_t i = 0; i < ARRAY_SIZE(frequencyBandTable); i++)
if (Frequency >= frequencyBandTable[i].lower && Frequency < frequencyBandTable[i].upper)
return 0;
break;
}
// dis-allowed TX frequency
return -1;
}
int32_t RX_freq_check(const uint32_t Frequency)
{ // return '0' if RX frequency is allowed
// otherwise return '-1'
if (Frequency < frequencyBandTable[0].lower || Frequency > frequencyBandTable[BAND_N_ELEM - 1].upper)
return -1;
if (Frequency >= BX4819_band1.upper && Frequency < BX4819_band2.lower)
return -1;
return 0; // OK frequency
}