-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg.py
108 lines (95 loc) · 2.38 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import torch.nn as nn
VGG_types = {
"VGG11": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
"VGG13": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],
"VGG16": [
64,
64,
"M",
128,
128,
"M",
256,
256,
256,
"M",
512,
512,
512,
"M",
512,
512,
512,
"M",
],
"VGG19": [
64,
64,
"M",
128,
128,
"M",
256,
256,
256,
256,
"M",
512,
512,
512,
512,
"M",
512,
512,
512,
512,
"M",
],
}
class VGG(nn.Module):
def __init__(self, in_channels, num_classes, architecture):
super(VGG, self).__init__()
self.in_channels = in_channels
self.num_classes = num_classes
self.architecture = architecture
self.conv_layers = self.create_conv_layers(architecture)
self.fc = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.conv_layers(x)
x = x.reshape(x.shape[0], -1)
x = self.fc(x)
return x
def create_conv_layers(self, architecture):
layers = []
in_channels = self.in_channels
for x in architecture:
if type(x) == int:
out_channels = x
layers += [
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
),
nn.BatchNorm2d(x),
nn.ReLU(),
]
in_channels = x
elif x == "M":
layers += [nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))]
return nn.Sequential(*layers)
if __name__ == "__main__":
device = "cuda" if torch.cuda.is_available() else "cpu"
model = VGG(3, 1000, VGG_types["VGG16"]).to(device)
x = torch.randn(1, 3, 224, 224)
print(model(x).shape)