-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMCTS.cpp
331 lines (275 loc) · 8.73 KB
/
MCTS.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#include <cmath>
#include <cfloat>
#include <numeric>
#include <iostream>
#include "MCTS.h"
// TreeNode
TreeNode::TreeNode()
: parent(nullptr),
is_leaf(true),
virtual_loss(0),
n_visited(0),
p_sa(0),
q_sa(0) {}
TreeNode::TreeNode(TreeNode* parent, double p_sa, unsigned int action_size)
: parent(parent),
children(action_size, nullptr),
is_leaf(true),
virtual_loss(0),
n_visited(0),
q_sa(0),
p_sa(p_sa) {}
TreeNode::TreeNode(
const TreeNode& node) { // because automic<>, define copy function
// struct
this->parent = node.parent;
this->children = node.children;
this->is_leaf = node.is_leaf;
this->n_visited.store(node.n_visited.load());
this->p_sa = node.p_sa;
this->q_sa = node.q_sa;
this->virtual_loss.store(node.virtual_loss.load());
}
TreeNode& TreeNode::operator=(const TreeNode& node) {
if (this == &node) {
return *this;
}
// struct
this->parent = node.parent;
this->children = node.children;
this->is_leaf = node.is_leaf;
this->n_visited.store(node.n_visited.load());
this->p_sa = node.p_sa;
this->q_sa = node.q_sa;
this->virtual_loss.store(node.virtual_loss.load());
return *this;
}
unsigned int TreeNode::select(double c_puct, double c_virtual_loss) {
double best_value = -DBL_MAX;
unsigned int best_move = 0;
TreeNode* best_node;
for (unsigned int i = 0; i < this->children.size(); i++) {
// empty node
if (children[i] == nullptr) {
continue;
}
unsigned int sum_n_visited = this->n_visited.load() + 1;
double cur_value =
children[i]->get_value(c_puct, c_virtual_loss, sum_n_visited);
if (cur_value > best_value) {
best_value = cur_value;
best_move = i;
best_node = children[i];
}
}
// add vitural loss
best_node->virtual_loss++;
return best_move;
}
void TreeNode::expand(const std::vector<double>& action_priors) {
{
// get lock
std::lock_guard<std::mutex> lock(this->lock);
if (this->is_leaf) {
unsigned int action_size = this->children.size();
for (unsigned int i = 0; i < action_size; i++) {
// illegal action
if (abs(action_priors[i] - 0) < FLT_EPSILON) {
continue;
}
this->children[i] = new TreeNode(this, action_priors[i], action_size);
}
// not leaf
this->is_leaf = false;
}
}
}
void TreeNode::backup(double value) {
// If it is not root, this node's parent should be updated first
if (this->parent != nullptr) {
this->parent->backup(-value);
}
// remove vitural loss
this->virtual_loss--;
// update n_visited
unsigned int n_visited = this->n_visited.load();
this->n_visited++;
// update q_sa
{
std::lock_guard<std::mutex> lock(this->lock);
this->q_sa = (n_visited * this->q_sa + value) / (n_visited + 1);
}
}
double TreeNode::get_value(double c_puct, double c_virtual_loss,
unsigned int sum_n_visited) const {
// u
auto n_visited = this->n_visited.load();
double u = (c_puct * this->p_sa * sqrt(sum_n_visited) / (1 + n_visited));
// virtual loss
double virtual_loss = c_virtual_loss * this->virtual_loss.load();
// int n_visited_with_loss = n_visited - virtual_loss;
if (n_visited <= 0) {
return u;
}
else {
return u + (this->q_sa * n_visited - virtual_loss) / n_visited;
}
}
// MCTS
MCTS::MCTS(NeuralNetwork* neural_network, unsigned int thread_num, double c_puct,
unsigned int num_mcts_sims, double c_virtual_loss,
unsigned int action_size)
: neural_network(neural_network),
thread_pool(new ThreadPool(thread_num)),
c_puct(c_puct),
num_mcts_sims(num_mcts_sims),
c_virtual_loss(c_virtual_loss),
action_size(action_size),
root(new TreeNode(nullptr, 1., action_size), MCTS::tree_deleter) {}
void MCTS::update_with_move(int last_action) {
auto old_root = this->root.get();
// reuse the child tree
if (last_action >= 0 && old_root->children[last_action] != nullptr) {
// unlink
TreeNode* new_node = old_root->children[last_action];
old_root->children[last_action] = nullptr;
new_node->parent = nullptr;
this->root.reset(new_node);
}
else {
this->root.reset(new TreeNode(nullptr, 1., this->action_size));
}
}
void MCTS::tree_deleter(TreeNode* t) {
if (t == nullptr) {
return;
}
// remove children
for (unsigned int i = 0; i < t->children.size(); i++) {
if (t->children[i]) {
tree_deleter(t->children[i]);
}
}
// remove self
delete t;
}
std::vector<double> MCTS::get_action_probs(GameField* g, double temp) {
// submit simulate tasks to thread_pool
std::vector<std::future<void>> futures;
for (unsigned int i = 0; i < this->num_mcts_sims; i++) {
// copy gomoku
auto game = std::make_shared<GameField>(*g);
auto future =
this->thread_pool->commit(std::bind(&MCTS::simulate, this, game, true));
// future can't copy
futures.emplace_back(std::move(future));
}
// wait simulate
for (unsigned int i = 0; i < futures.size(); i++) {
futures[i].wait();
}
// std::cout << "simulation ends" << std::endl;
// calculate probs
std::vector<double> action_probs(ALL, 0);
const auto& children = this->root->children;
// greedy
if (temp - 1e-3 < FLT_EPSILON) {
unsigned int max_count = 0;
unsigned int best_action = 0;
for (unsigned int i = 0; i < children.size(); i++) {
if (children[i] && children[i]->n_visited.load() > max_count) {
max_count = children[i]->n_visited.load();
best_action = i;
}
}
action_probs[best_action] = 1.;
return action_probs;
}
else {
// explore
double sum = 0;
for (unsigned int i = 0; i < children.size(); i++) {
if (children[i] && children[i]->n_visited.load() > 0) {
action_probs[i] = pow(children[i]->n_visited.load(), 1 / temp);
sum += action_probs[i];
}
}
// renormalization
std::for_each(action_probs.begin(), action_probs.end(),
[sum] (double& x) { x /= sum; });
return action_probs;
}
}
void MCTS::simulate(std::shared_ptr<GameField> g, bool explore)
{
auto node = this->root.get();
while (true)
{
if (node->is_leaf) break;
auto action = node->select(this->c_puct, this->c_virtual_loss);
g->play(action);
node = node->children[action];
}
auto status = g->referee();
double value = 0;
if (status == unfinished)
{
//std::pair<std::vector<float>, float> net_output;
//try
//{
// auto net_ouput = neural_network->get_net_output(g);
//}
//catch (std::runtime_error& e)
//{
// std::cout << e.what() << std::endl;
// exit(1);
//}
auto future = this->neural_network->commit(g.get());
auto result = future.get();
auto net_pri_probs = std::move(result[0]);
value = result[1][0];
//std::cout << "--------" << std::endl;
//for (auto i : net_pri_probs)
//{
// std::cout << i << std::endl;
//}
//std::cout << "--------" << std::endl;
auto pri_probs = net_pri_probs;
auto legal_moves_mask = g->valid_moves_mask(g->current_color);
double sum = 0;
for (int i = 0; i < legal_moves_mask.size(); i++)
{
if (legal_moves_mask[i] == 1)
{
sum += net_pri_probs[i];
}
else pri_probs[i] = 0;
}
std::for_each(pri_probs.begin(), pri_probs.end(), [sum] (double& x) { x /= sum; });
auto long_noise_prob = std::vector<double>(ALL, 0);
if (explore)
{
int valid_cnt = std::accumulate(legal_moves_mask.begin(), legal_moves_mask.end(), 0);
auto noise_prob = get_noise(valid_cnt);
int noise_ptr = 0;
for (int i = 0; i < ALL; i++)
{
if (legal_moves_mask[i] == 1)
{
long_noise_prob[i] = noise_prob[noise_ptr++];
}
}
for (int i = 0; i < ALL; i++)
{
pri_probs[i] = 0.8 * pri_probs[i] + 0.2 * long_noise_prob[i];
}
}
node->expand(pri_probs);
}
else
{
auto winner = status;
value = (winner == g->current_color ? 1 : -1);
}
node->backup(-value);
}