-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHate-Speech-Detection.py
251 lines (160 loc) · 6.47 KB
/
Hate-Speech-Detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Load relevant packages
import pandas as pd
import numpy as np
import re
import csv
import operator
import random
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, f1_score
from matplotlib import pyplot as plt
from collections import defaultdict, Counter
pd.set_option('display.max_colwidth', None)
pd.options.mode.chained_assignment = None
df = pd.read_csv("./0_data/founta2018_formative2.csv")
random.sample(list(df["tweet"]),10)
def clean_text(text):
# replace mentions and URLs with special token --> provide to students
text = re.sub(r"@[A-Za-z0-9_-]+",'USR',text)
text = re.sub(r"http\S+",'URL',text)
# remove newline and tab characters
text = re.sub("\n", "",text)
text = re.sub("\t", "",text)
# strip whitespace
text= text.strip()
#text = " ".join([w for w in text.split()])
# lowercase
text = " ".join([w.lower() for w in text.split()])
return text
df['tweet'] = df.tweet.map(lambda x: clean_text(x))
full= len(df[df.duplicated(subset=["label","tweet"])])
full
df[df.duplicated()]["label"].value_counts()
dup_tweets= len(df[df.duplicated(subset=["tweet"])])-full
dup_tweets
df=df.drop_duplicates(subset=['label', 'tweet'], keep='last')
binary= {"spam":"non-hateful","normal":"non-hateful","abusive":"non-hateful","hateful":"hateful"}
df["label"]= df.label.map(binary)
df["label"].value_counts()
df["label"].value_counts(normalize=True)
token_pattern = re.compile(r"(?u)\b\w\w+\b")
df["tweet_list"] = df.tweet.apply(lambda x: token_pattern.findall(x))
categories = ["hateful", "non-hateful"]
train_tweets, dev_tweets, test_tweets = dict(), dict(), dict()
X_train, X_test, y_train, y_test = train_test_split(df["tweet_list"], df["label"], test_size=0.15, random_state=123)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=(15/85), random_state=123)
for c_i in categories:
train_tweets[c_i]=[X_train[i] for i in X_train.index if (y_train[i]==c_i)]
dev_tweets[c_i]=[X_val[i] for i in X_val.index if (y_val[i]==c_i)]
test_tweets[c_i]=[X_test[i] for i in X_test.index if (y_test[i]==c_i)]
def all_dict(sample):
word_list = [w for r in sample for w in r]#.strip().split()]
# Create a dictionary of words and corresponding frequency counts using a Counter
vocab_dict = Counter(word_list)
# Return filtered dictionary
return Counter({w: c for w, c in vocab_dict.items()})
def dis_dict(sample):
# Create a list of all words in the reviews
word_list = [w for r in sample for w in set(r)]#.strip().split())]
# Create a dictionary of words and corresponding frequency counts using a Counter
vocab_dict = Counter(word_list)
# Return filtered dictionary
return Counter({w: c for w, c in vocab_dict.items()})
vocab_dicts = dict()
distinct_dicts = dict()
for c_i in categories:
vocab_dicts[c_i] = all_dict(train_tweets[c_i])
distinct_dicts[c_i]= dis_dict(train_tweets[c_i])
print(vocab_dicts["hateful"].most_common(10))
print(vocab_dicts["non-hateful"].most_common(10))
stop=[]
with open("./0_data/stopwords_formative2.txt","r", newline = '') as f:
reader = csv.reader(f, delimiter='\n')
for [i] in reader:
stop.append(i)
print(stop)
def delete_stop(dicti):
for c in categories:
for k in list(dicti[c].keys()):
if k in stop:
dicti[c].pop(k)
delete_stop(vocab_dicts)
delete_stop(distinct_dicts)
wordc={}
wordc["hateful"]=np.sum(list(vocab_dicts["hateful"].values()))
wordc["non-hateful"]=np.sum(list(vocab_dicts["non-hateful"].values()))
print(wordc)
# Naive Bayes without smoothing
# Define function to get P(w|c_i), class-conditional probabilities for w
common_w= list(set(vocab_dicts["hateful"]) & set(vocab_dicts["non-hateful"]))
def delete_dis(dicti):
for c in categories:
for k in list(dicti[c].keys()):
if k not in common_w:
dicti[c].pop(k)
delete_stop(vocab_dicts)
delete_stop(distinct_dicts)
import math
vocab_dicts["non-hateful"]
(vocab_dicts["non-hateful"]["imagine"])/(np.sum(list(vocab_dicts["non-hateful"].values())))
len(vocab_dicts.items())
for l,word in vocab_dicts.items():
print(l)
def Pwc(diction=vocab_dicts):
pw={}
for l,word in vocab_dicts.items():
pw[l]={}
for k,f in word.items():
pr= f/wordc[l]
#pr=(vocab_dicts[clas][word])/wordc[clas] #Freq of word/Total words (in class)= Probability of word in a class
pw[l][k]=np.log(pr) #np.log(pr)
return pw
labels.count("non-hateful")
def Pc(labels):
a= labels.count("hateful")
b= labels.count("non-hateful")
prob_clas={}
prob_clas["hateful"]=np.log(a/(a+b))
prob_clas["non-hateful"]=np.log(b/(a+b))
return prob_clas
Pc()
def pred1(t_set=train_tweets):
tweets=[f for k,v in train_tweets.items() for f in train_tweets[k]]
labels=[k for k,v in train_tweets.items() for f in train_tweets[k]]
pred= []
prob_class= Pc(labels)
pw= Pwc()
for i in range(len(tweets)):
scores={"hateful":0,"non-hateful":0}
for word in tweets[i]:
if word in common_w:
scores["hateful"]+=pw["hateful"][word]
scores["non-hateful"]+=pw["non-hateful"][word]
scores["hateful"]+= prob_class["hateful"]
scores["non-hateful"]+= prob_class["non-hateful"]
cl=max(scores, key=scores.get)
pred.append((cl,1 if tweets[i] in train_tweets[cl] else 0))
return pred
def pred1(t_set=train_tweets):
tweets=[f for k,v in train_tweets.items() for f in train_tweets[k]]
labels=[k for k,v in train_tweets.items() for f in train_tweets[k]]
pred= []
prob_class= Pc(labels)
pw= Pwc()
for i in range(len(tweets)):
scores={"hateful":0,"non-hateful":0}
for word in tweets[i]:
if word in common_w:
scores["hateful"]+=pw["hateful"][word]
scores["non-hateful"]+=pw["non-hateful"][word]
scores["hateful"]+= prob_class["hateful"]
scores["non-hateful"]+= prob_class["non-hateful"]
cl=max(scores, key=scores.get)
pred.append((cl,cl==labels[i]))
return pred
pred=pred1()
summ=0
for i in pred:
(h,[v])=i
summ+=v
summ/len(pred)