-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrp.jl
233 lines (198 loc) · 6.78 KB
/
crp.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
##### Chinese Restaurant Process arrival time utilities
type CRPinterarrival <: DiscreteUnivariateDistribution
theta::Float64
alpha::Float64
n::Int
k::Int
# crp::Bool
end
Base.minimum(s::CRPinterarrival) = 1
Base.maximum(s::CRPinterarrival) = Inf
function partial(f,a...)
(b...) -> f(a...,b...)
end
function CRP(a...)
"""
Utility function for passing arguments `n` and `k` during sampling updates
"""
partial(CRPinterarrival,a...)
end
Distributions.logpdf(s::CRPinterarrival,x::Int) = _logpdf(s,x)
Distributions.logpdf(s::CRPinterarrival,v::Vector{Int}) = _logpdf_batch(s,v)
function _logpdf(s::CRPinterarrival,x::Int)
return crp_logpdf(s.theta,s.alpha,s.n,s.k,x)
end
function crp_logpdf(theta::Float64,alpha::Float64,n::Int,k::Int,x::Int)
ka = k*alpha
nt = n + theta
logp = log(theta + ka) - log(nt)
if x > 1
nka = n - ka
for i in 2:x
logp += log(nka + i - 2) - log(nt + i - 1)
end
end
return logp
end
function crp_logpdf(theta::Float64,alpha::Float64,n::Int,k::Int,v::Vector{Int})
# for a vector of evaluation points
vmax = maximum(v)
vmin = minimum(v)
nv = size(v,1)
idx_all = 1:nv
idx_j = trues(nv)
ret = zeros(Float64,nv)
ka = k*alpha
nt = n + theta
nka = n - ka
logp = log(theta + ka) - log(nt)
for j in 1:vmax
j > 1 ? logp += log(nka + j - 2) - log(nt + j - 1) : nothing
for i in idx_all[idx_j]
if v[i]==j
ret[i] = logp
idx_j[i] = false
end
end
end
return ret
end
function _logpdf_batch(s::CRPinterarrival,v::Vector{Int})
return crp_logpdf(s.theta,s.alpha,s.n,s.k,v)
end
Distributions.pdf(s::CRPinterarrival,x::Int) = _pdf(s,x)
function _pdf(s::CRPinterarrival,x::Int)
return exp.(logpdf(s,x))
end
Distributions.cdf(s::CRPinterarrival,x::Int64) = _cdf(s,x)
function _cdf(s::CRPinterarrival,x::Int64)
return crp_cdf(s.theta,s.alpha,s.n,s.k,x)
end
function crp_cdf(theta::Float64,alpha::Float64,n::Int,k::Int,x::Int)
if x==0
return 0.
else
ka = k*alpha
nt = n + theta
P1 = (theta + ka)/(nt)
if x > 1
nka = n - ka
prev = P1
P = 0
for j in 2:x
run = exp( log(prev) + log(nka + j - 2) - log(nt + j - 1) )
P += run
prev = run
end
end
return x > 1 ? P1 + P : P1
end
end
Base.Random.rand(s::CRPinterarrival) = _rand(s)
function _rand(s::CRPinterarrival)
coin = 0
ct = 0
while coin != 1
ct += 1
p = (s.theta + s.alpha*s.k)/(s.theta + s.n + ct - 1)
coin = rand(Bernoulli(p))
end
return ct
end
# slice sampling utilities
function crp_theta_logpdf(theta::Float64,alpha::Float64,k::Int,n::Int,log_prior::Function)
"""
calculate unnormalized log-pdf proportional to `theta` in the CRP
log_prior is a function that returns the (possibly unnormalized) prior log-probability
of `theta`
"""
if theta <= -alpha
# println("theta: ",theta," // alpha: ",alpha)
return -Inf
end
logp = log_prior(theta,alpha)
for j in 1:(k-1)
logp += log(theta + j*alpha)
end
for m in 1:(n-1)
logp += -log(theta + m)
end
return logp
end
function crp_theta_trans_logpdf(theta_trans::Float64,alpha::Float64,k::Int,n::Int,log_prior::Function)
"""
computes log-pdf when theta has been transformed to the entire real line
theta_trans = log(theta + alpha) (for fixed alpha)
"""
theta = exp(theta_trans) - alpha
return crp_theta_logpdf(theta,alpha,k,n,log_prior) + theta_trans
end
function crp_alpha_logpdf(alpha::Float64,theta::Float64,T::Vector{Int},n::Int,log_prior::Function)
"""
calculate unnormalized log-pdf proportional to `alpha` in the CRP
log_prior is a function that returns the (possibly unnormalized) prior log-probability
of `alpha`
"""
if theta <= -alpha || alpha > 1. || alpha < 0.
return -Inf
end
k = size(T,1)
logp = log_prior(alpha) + sum(log.(theta + alpha.*(1:(k-1))))
logp += sum( lgamma.(T[2:end] .- 1 .- alpha.*(1:(k-1))) .- lgamma.(T[1:(k-1)] .- alpha.*(1:(k-1))) )
return logp
end
function crp_alpha_trans_logpdf(alpha_trans::Float64,theta::Float64,T::Vector{Int},n::Int,log_prior::Function)
"""
computes log-pdf when alpha has been transformed to the entire real line
alpha_trans = log(alpha - max(0,-theta)) - log(1-alpha) for fixed theta
"""
alpha = (exp(alpha_trans) + max(0,-theta))/(1 + exp(alpha_trans))
return crp_alpha_logpdf(alpha,theta,T,n,log_prior) + alpha_trans - log(1 + exp(alpha_trans)) + log(1 - alpha)
end
function crp_alpha_trans_coupled_logpdf(alpha_trans::Float64,theta::Float64,PP::Vector{Int},T::Vector{Int},n::Int,log_prior::Function)
"""
for the "coupled CRP" model, where the NTL alpha parameter is the same as the CRP alpha paramter
computes log-pdf when alpha has been transformed to the entire real line
alpha_trans = log(alpha - max(0,-theta)) - log(1-alpha) for fixed theta
"""
alpha = (exp(alpha_trans) + max(0,-theta))/(1 + exp(alpha_trans))
crp_arrivals_lpdf = crp_alpha_logpdf(alpha,theta,T,n,log_prior) # arrivals contribution
trans_lpdf = alpha_trans - log(1 + exp(alpha_trans)) + log(1 - alpha) # volume conrrection of transformation
dummy_prior = x -> 0.
crp_sbr_lpdf = ntl_alpha_logpdf(alpha,PP,T,dummy_prior) # size-biased reinforcement contribution
return crp_arrivals_lpdf + crp_sbr_lpdf + trans_lpdf
end
# parameter updates
# uncoupled CRP
function update_crp_interarrival_params!(ia_params::Vector{Float64},PP::Vector{Int},T::Vector{Int},
n::Int,log_prior_theta::Function,log_prior_alpha::Function,
w_t::Float64,w_a::Float64,coupled::Bool)
# update theta via slice sampling
K = size(T,1)
ss_gt = x -> crp_theta_trans_logpdf(x,ia_params[2],K,n,log_prior_theta)
theta_trans = log(ia_params[1] + ia_params[2])
theta_trans_ss = slice_sampling(ss_gt,w_t,theta_trans)
ia_params[1] = exp(theta_trans_ss) - ia_params[2]
if !coupled
ss_ga = x -> crp_alpha_trans_logpdf(x,ia_params[1],T,n,log_prior_alpha)
else
ss_ga = x -> crp_alpha_trans_coupled_logpdf(x,ia_params[1],PP,T,n,log_prior_alpha)
end
alpha_trans = log(ia_params[2] - max(0.,-ia_params[1])) - log(1 - ia_params[2])
alpha_trans_ss = slice_sampling(ss_ga,w_a,alpha_trans)
ia_params[2] = (exp(alpha_trans_ss) + max(0,-ia_params[1]))/(1 + exp(alpha_trans_ss))
end
function crp_theta_loglik(theta::Float64,alpha::Float64,K::Int,n::Int)
return sum( log.(theta .+ (1:(K-1)).*alpha) ) - sum( log.(theta .+ (1:(n-1))) )
end
function grad_crp_theta_loglik(theta::Float64,alpha::Float64,K::Int,n::Int)
return sum( 1./(theta .+ (1:(K-1)).*alpha) ) - sum( 1./(theta .+ (1:(n-1))) )
end
function hess_crp_theta_loglik(theta::Float64,alpha::Float64,K::Int,n::Int)
return -sum( 1./(theta .+ (1:(K-1)).*alpha).^2 ) + sum( 1./(theta .+ (1:(n-1))).^2 )
end
function initialize_crp_params(theta_prior::UnivariateDistribution,alpha_prior::UnivariateDistribution)
alpha = mean(alpha_prior)
theta = mean(theta_prior)
return [theta; alpha]
end