-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.tex
737 lines (660 loc) · 27.7 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
\documentclass{beamer}
\setbeamertemplate{caption}[numbered]
\usetheme{CambridgeUS}
% \usetheme{Berlin}
% \usetheme{Copenhagen}
% \usetheme{AnnArbor}
% \usetheme{Antibes}
% \usetheme{Bergen}
\usepackage{graphicx} % Required for inserting images
\usepackage{tikz}
\usepackage{wrapfig}
\usepackage{tcolorbox}
\usepackage{caption}
\title[Coupling constant between NP and LC]{Mean field free-energy coupling parameter of nanoparticles and liquid crystal from molecular simulation of the isotropic-nematic transition.}
\author[]{J. Emmanuel Flores \inst{1}}
\institute[Journal Club, Spring 2024]{\inst{1} Tufts University, Medford, MA}
\date{\today}
% logo of my university
\titlegraphic{\includegraphics[width=4cm]{Figures/A&S_Hori_BK+BL.jpg}}
\AtBeginSection[] % Show Outline at the beginning of every new section.
{
\begin{frame}
\frametitle{Table of Contents}
\tableofcontents[currentsection]
\end{frame}
}
\begin{document}
\maketitle
\begin{frame}
\frametitle{Outline}
\tableofcontents
\end{frame}
\section{Introduction}
\subsection{Segregation of NP in a LC and continuum models.}
\begin{frame}{Self-Assembly}
\begin{itemize}
\item Disordered system $\rightarrow$ structure
\begin{itemize}
\item Consequence between interaction of the components.
\item No external direction.
\end{itemize}
\item Examples
\begin{itemize}
\item Phospholipid bilayers
\item Viral apsids
\item Block copolymer gyroids
\item Micro shells of Nanpoarticles (NPs)
\end{itemize}
\item Applications
\begin{itemize}
\item Drug delivery
\item Photonic crystals
\item Biological systems.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Self-assembly of NP in a LC}
\begin{columns}
\begin{column}{0.4\textwidth}
\begin{itemize}
\item Fluorescent NP
\begin{itemize}
\item Functionalized with mesogens.
\item Soluble in 5CB
\item Insoluble in 5CB
\end{itemize}
\item Micro shell formation
\begin{itemize}
\item Stable structures.
\end{itemize}
\end{itemize}
\end{column}
\begin{column}{0.6\textwidth}
\begin{figure}
\centering
\includegraphics[scale = 0.28]{Figures/Linda_Experiment.png}
\caption{A. L. Rodarte, et al. Soft Matter (2015)}
\label{fig:enter-label}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Continuum Models}
\begin{itemize}
\item Volume fraction of NPs: conserved field $\eta$.
\item Order parameter of the liquid crystal (LC): non conserved field $S$.
\item Free energy of coupling between $\eta$ and $S$
\begin{equation}
F = \frac{a(T-T^*)}{2}S^2 - \frac{\omega}{3}S^3 + \frac{u}{4}S^4 + B\eta^2 + \frac{q}{2}\eta S^2
\end{equation}
\end{itemize}
\end{frame}
\begin{frame}{Determination of $g$}
\begin{itemize}
\item $g$ $\rightarrow$ coupling between fields.
\item Parameter required for the theory.
\item Hard to measure experimentally.
\item Alternative: Molecular Dynamics (MD).
\end{itemize}
\end{frame}
\section{Model and simulation method}
\subsection{Rigid chains of LJ: Molecular Dynamics.}
\begin{frame}{Model and Statistical Ensemble}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item LC: rigid chain of 9 Lenard-Jones(LJ) spheres.
\item NPs: spheres of LJ, bigger than LC chains.
\item NPT ensemble.
\item Gradual elevation of the pressure and temperature to generate initial states.
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[scale = 0.20]{Figures/Model.png}
\caption{{\scriptsize a. Representative screenshot of the systems, b. Oyarzún et al. Molecular Physics (2016).}}
\label{fig:enter-label}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{HOOMD-blue}
HOOMD-blue is a general-purpose particle simulation toolkit, implementing molecular dynamics and hard particle Monte Carlo optimized for fast execution on both GPUs and CPUs.
\begin{itemize}
\item Python package.
\item Active development.
\item Easy instalation.
\end{itemize}
\begin{figure}
\centering
\includegraphics[scale = 0.15]{Figures/hoomd.png}
%\caption{Caption}
\label{fig:Hoomd Logo}
\end{figure}
\end{frame}
\begin{frame}{Methodology}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item Isobars studied: $P \in \{1.3, 1.5, 1.8, 2.3\}$
\item Sigmas studied: $\sigma \in \{0, 2, 4, 5\}$
\item Explicitly:
\begin{itemize}
\item $\sigma = 0$ $\implies P_{\sigma_0} \in \{1.3, 1.5, 1.8, 2.3\}$
\item $\sigma = 2$ $\implies P_{\sigma_2} \in \{1.3, 1.5, 1.8, 2.3\}$
\item $\sigma = 4$ $\implies P_{\sigma_4} \in \{1.3, 1.5, 1.8, 2.3\}$
\item $\sigma = 5$ $\implies P_{\sigma_5} \in \{1.3, 1.5, 1.8, 2.3\}$
\end{itemize}
\end{itemize}
\end{column}
\begin{column}{0.6\textwidth}
\begin{figure}
\centering
\includegraphics[scale=0.22
]{Figures/Simulated_Systems.png}
\caption{{\scriptsize Points for simulation.}}
\label{fig:enter-label}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\section{Results}
\subsection{I-N transition, coupling constant, entropy changes and latent heat.}
\begin{frame}{Isotropic-Nematic transition}
\begin{itemize}
\item The order parameter S decreases rapidly with increasing temperature above TIN
\item Non linear Fit.
\end{itemize}
\begin{figure}
\centering
\includegraphics[scale = 0.25]{Figures/Transition.png}
\caption{Order parameter as a function of temperature.}
\label{fig:enter-label}
\end{figure}
\end{frame}
\begin{frame}{Determination of $g$}
\begin{columns}
\begin{column}{0.5\textwidth}
From Landau-de Gennes theory, we know that
$$g = -R\frac{aT_{c_0}}{\eta}$$
So, using our results for R and η, along with the numericla values
$$a = 190 kPa/K (*),$$
$$T_{c_0} = 313.8 (**),K$$
it is possible to calculate the coupling constant for 8CB
$$g = 53MPa$$
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[scale = 0.30]{Figures/G_Det1.png}
\caption{{\scriptsize Transition temperature as a function of the packing factor for isobars 1.3 (red), 1.5 (green), 1.8 (blue) and 2.3 (black).}}
\label{fig:enter-label}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Dependence with the pressure}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item The coupling “constant” depends on the pressure: $g = g(P)$
\item The I-N transition temperature decreases with increasing NPs concentration.
\item The I-N transition temperature also depends on pressure, at fixed $\eta $.
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[scale = 0.20]{Figures/P_Dep.png}
\caption{{\scriptsize a. Nematic isotropic transition temperature for different diameters of NPs., b. Volume fraction for different diameters of NPs.}}
\label{fig:enter-label}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Latent heat per particle}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item The latent heat per particle associated with the I-N transition increases linearly with pressure for the pure system and each of the other systems.
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[scale = 0.20]{Figures/L_Heat.png}
\caption{{\scriptsize a. Values of latent heat per particle associated with the I-N transition, b. Graph of the latent heat per particle associated with the I-N transition for the pure system (red), (green), (blue) and black.}}
\label{fig:enter-label}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Entropy of I-N transition}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item The entropy change per particle associated with the I-N transition is independent of pressure, but is proportional to volume.
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{figure}
\centering
\includegraphics[scale = 0.22]{Figures/Entropy.png}
\caption{{\scriptsize a. Values of the change in entropy per particle associated with the transition, b. Change in entropy per particle associated with the transition.}}
\label{fig:enter-label}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\section{Conclusions}
\begin{frame}{Conclusions}
\begin{itemize}
\item With this methodology it is possible to find the coupling parameter between NPs and mesogens, calculate the latent heat of transition and the entropy associated with this change (because HOOMD can be used on GPUs it makes the method efficient).
\item The coupling parameter is strongly related to pressure.
\item The observed linear dependence of $\eta$ on the transition temperature indicates that the single-particle theoretical description might be suitable for interpreting the associated free energy coupling term via the chemical potential.
\item The dependence of $g$ on $P$ can lead to the formation of spatially periodic NP structures upon standing acoustic waves or passing shock waves.
\end{itemize}
\end{frame}
% \subsection{Physics and PDE}
% \begin{frame}{Physics and PDE}
% \begin{columns}
% \begin{column}{0.6\textwidth}
% \begin{itemize}
% \item<1-> Almost all of the physical laws are written in the language of PDEs.
% \item<2-> The huge complexity of these equations make them difficult(or impossible) to solve analytically.
% \item<3-> Numerical Methods:
% \begin{itemize}
% \item<4-> Finite Differences
% \item<5-> Finite Element (Volume) Methods.
% \item<5-> Spectral Methods (Chebyshev polynomials).
% \end{itemize}
% \end{itemize}
% \end{column}
% \begin{column}{0.37\textwidth}
% \begin{tcolorbox}[title= Maxwell's Equations]
% \begin{itemize}
% \item $\nabla\cdot \mathbf{E} =\rho / \epsilon_0,$
% \item $\nabla\times \mathbf{E} = 0, $
% \item $\nabla\cdot \mathbf{B} = 0,$
% \item $\nabla\times \mathbf{B} = \mu_0\mathbf{J}.$
% \end{itemize}
% \end{tcolorbox}
% \end{column}
% \end{columns}
% \end{frame}
% \section{Problem studied: Coaxial Cable}
% \subsection{Statement of the Problem}
% \begin{frame}{Statement of the Problem}
% \begin{columns}
% \begin{column}{0.6\textwidth}
% \begin{itemize}
% \item Coaxial Cylinders
% \begin{itemize}
% \item Radial symmetry
% \item Analytic solution is nonlinear
% \end{itemize}
% \end{itemize}
% \end{column}
% \begin{column}{0.4\textwidth} %%<--- here
% \begin{center}
% \begin{tikzpicture} [scale=0.40]
% \draw[help lines, color=gray!30, dashed] (-4.4,-4.4) grid (4.4,4.4);
% \draw[->,ultra thick] (-4.5,0)--(4.5,0) node[right]{\small $x$};
% \draw[->,ultra thick] (0,-4.5)--(0,4.5) node[above]{\small $y$};
% \draw [thick] circle [radius=2.0];
% \draw [thick] (0,0) circle [radius=4];
% \draw[-, rotate around={-45:(0,0)}] (0,0) -- (2,0) node [pos=1.45] {\small $a$, $V_a$};
% \draw[-, rotate around={20:(0,0)}] (0,0) -- (4.,0) node [pos=0.7, above] {\small $b$, $V_b$};
% \draw[fill=black](0,0) circle (1 pt) node [anchor=south east] {\small $O$};
% \end{tikzpicture}
% \captionof{figure}{Two dimensional schematic projection of the coaxial problem.}
% \end{center}
% \end{column}
% \end{columns}
% \end{frame}
% \subsection{Analytical Solution}
% \begin{frame}{Analytical Solution}
% \begin{columns}
% \begin{column}{0.6\textwidth}
% \begin{itemize}
% \item<1-> Laplacian in Cylindrical Coordinates
% \begin{equation}
% \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial V}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2} = 0,
% \end{equation}
% \item<2-> Simplification by symmetry
% \begin{equation}
% \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial V}{\partial r}\right)=0,
% \end{equation}
% \item<3-> Analytical Solution
% \begin{equation}
% V(r) = \frac{V_b - V_a}{\ln(b/a)}\ln\left(\frac{r}{a}\right) + V_a.
% \label{eq:coax_pot}
% \end{equation}
% \end{itemize}
% \end{column}
% \begin{column}{0.4\textwidth} %%<--- here
% \begin{center}
% \begin{tikzpicture} [scale=0.40]
% \draw[help lines, color=gray!30, dashed] (-4.4,-4.4) grid (4.4,4.4);
% \draw[->,ultra thick] (-4.5,0)--(4.5,0) node[right]{\small $x$};
% \draw[->,ultra thick] (0,-4.5)--(0,4.5) node[above]{\small $y$};
% \draw [thick] circle [radius=2.0];
% \draw [thick] (0,0) circle [radius=4];
% \draw[-, rotate around={-45:(0,0)}] (0,0) -- (2,0) node [pos=1.45] {\small $a$, $V_a$};
% \draw[-, rotate around={20:(0,0)}] (0,0) -- (4.,0) node [pos=0.7, above] {\small $b$, $V_b$};
% \draw[fill=black](0,0) circle (1 pt) node [anchor=south east] {\small $O$};
% \end{tikzpicture}
% \captionof{figure}{Two dimensional schematic projection of the coaxial problem.}
% \end{center}
% \end{column}
% \end{columns}
% \end{frame}
% \section{Computational Setup}
% \subsection{General Finite Differences Method}
% \begin{frame}{Finite Differences Methods}
% \begin{columns}
% \begin{column}{0.6\textwidth}
% \begin{itemize}
% \item <1-> How can we approximate the Laplacian operator?
% \begin{equation*}
% \nabla^2 \xrightarrow{Discretize} \;\;\; ???
% \end{equation*}
% \item <2-> Use a quotient to approximate partial derivatives
% \begin{equation}
% \frac{\partial^2 V}{\partial x^2} \approx \frac{1}{2} \frac{\Delta V}{(\Delta x)^2}
% \end{equation}
% \item<2-> We can model a system with a series of these \textbf{finite differences} to approximate a partial differential operator
% \end{itemize}
% \end{column}
% \begin{column}{0.4\textwidth}
% % \begin{figure}[h]
% % \centering
% % \includegraphics[width=0.95\textwidth]{Figures/Landau_FDM.png}
% % \caption{ (TODO: Cite me.)}
% % \label{fig:landau_fdm}
% % \end{figure}
% % \begin{tikzpicture}
% % [
% % xscale=0.8,
% % yscale=0.8,
% % grid/.style={draw,thin,gray!50},
% % node/.style={draw,circle,fill=black,inner sep=1pt}
% % ]
% % % Grid lines
% % \draw[grid] (0,0) grid (4.5,4.4);
% % \draw[help lines, color=gray!30, dashed] (-0.5,-0.5) grid (4.4,4.4);
% % \draw[->,ultra thick] (-0.25,-0.25)--(4.5,-0.25) node[right]{$x$};
% % \draw[->,ultra thick] (-0.25,-0.26)--(-0.25,4.5) node[above]{$y$};
% % % Grid points
% % \foreach \x in {0,1,2,3,4} {
% % \foreach \y in {0,1,2,3,4} {
% % \node [node] at (\x,\y) {};
% % }
% % }
% % \end{tikzpicture}
% \begin{tikzpicture}
% [
% xscale=0.9,
% yscale=0.9,
% grid/.style={draw,thin,gray!50},
% node/.style={draw,circle,fill=gray,inner sep=1pt}
% ]
% % Grid lines
% \draw[grid] (0,0) grid (4.5,4.4);
% \draw[help lines, color=gray!10, dashed] (-0.5,-0.5) grid (4.4,4.4);
% \draw[->,ultra thick] (-0.25,-0.25)--(4.5,-0.25) node[right]{$x$};
% \draw[->,ultra thick] (-0.25,-0.26)--(-0.25,4.5) node[above]{$y$};
% % Grid points
% \foreach \x in {0,1,2,3,4} {
% \foreach \y in {0,1,2,3,4} {
% \node [node] at (\x,\y) {};
% }
% }
% \filldraw[red] (2,2) circle (2pt) node[anchor=south]{\tiny $(i,j)$};
% \filldraw[blue] (3,2) circle (2pt) node[anchor=north]{\tiny $(i+1,j)$};
% \filldraw[blue] (1,2) circle (2pt) node[anchor=north]{\tiny $(i-1,j)$};
% \filldraw[blue] (2,3) circle (2pt) node[anchor=south]{\tiny $(i,j+1)$};
% \filldraw[blue] (2,1) circle (2pt) node[anchor=north]{\tiny $(i,j-1)$};
% \end{tikzpicture}
% \end{column}
% \end{columns}
% \end{frame}
% \begin{frame}{Generalizing Finite Differences}
% \begin{columns}
% \begin{column}{0.6\textwidth}
% \begin{itemize}
% \item <1-> Express FDM on an arbitrary graph (mesh)
% \item <1-> Every node wants to satisfy Laplace's equation,
% \begin{equation}
% \nabla^2 V_i = 0
% \end{equation}
% \item <2-> Using a finite differences approximation, every node is informed by its neighbors
% \item <2-> Fix potential of some nodes (boundary conditions), then generate a linear system of equations that can be solved
% \end{itemize}
% \end{column}
% \begin{column}{0.4\textwidth}
% \begin{figure}[h]
% \centering
% \includegraphics[width=0.95\textwidth]{Figures/Coax_GFDM_Connectivity.png}
% \label{fig:coax_gfdm_connectivity}
% \caption{Schematic of the GFDM approach to the COAX problem. Black nodes are boundaries, lines show connections generated by the GFDM algorithm.}
% \end{figure}
% \end{column}
% \end{columns}
% \end{frame}
% \section{Finite Element Method}
% \begin{frame}{FEM Approach}
% \begin{columns}
% \begin{column}{0.5\textwidth}
% \begin{itemize}
% \item<1-> Strong Form: function and its derivatives for a well posed problem.
% \item<2-> What if we expand/relax the conditions?
% \item<3-> Express the problem in a variational way
% \item<4-> Approximate the solution in each element and interpolate solutions.
% \end{itemize}
% \end{column}
% \begin{column}{0.4\textwidth}
% \begin{itemize}
% \item<5-> Weak Form:
% \begin{equation*}
% \int_{\Omega}d\Omega( \nabla V\cdot\nabla \eta )= 0
% \end{equation*}
% \begin{figure}
% \centering
% \includegraphics[width=0.75 \textwidth]{Figures/Coaxial_Mesh-removebg-preview.png}
% \caption{Mesh for the coaxial cable problem.}
% \label{fig:Coax_Mesh}
% \end{figure}
% \end{itemize}
% \end{column}
% \end{columns}
% \end{frame}
% \section{Results}
% \subsection{GFD and FEM}
% \begin{frame}{Coaxial Cable}
% \begin{figure}[h]
% \begin{columns}
% \begin{column}{0.5\linewidth}
% \centering\includegraphics[width=0.85\textwidth]{Figures/Coax_GFDM.png}
% \end{column}
% \begin{column}{0.5\linewidth}
% \centering\includegraphics[width=1.0\textwidth]{Figures/PotentialFieldFEMCoaxial.png}
% \end{column}
% \end{columns}
% \caption{
% Potential obtained for the coaxial cable. \textbf{Left}: GFD approach. \textbf{Right}: FEM approach. As we can see, we have a qualitatively good agreement between both approaches.}
% \label{fig:tCoaxial_Cable_VField}
% \end{figure}
% \end{frame}
% \begin{frame}{Comparison Between Both Approaches}
% \begin{figure}[h]
% \begin{columns}
% \begin{column}{0.5\linewidth}
% \includegraphics[width=0.95\textwidth]{Figures/ComparissonPotentialFEMGFD.png}
% \end{column}
% \begin{column}{0.5\linewidth}
% \includegraphics[width=0.95\textwidth]{Figures/ComparissonPotentialFEMGFD_Zoom.png}
% \end{column}
% \end{columns}
% \caption{Comparison between both approaches for the coaxial cable, for GFD we have an RMS = 0.084, whereas for FEM RMS = 0.008. \textbf{Left}: Plot for the whole domain of the radius. \textbf{Right}: Zoom on the zone where the solutions are most different between each other.}
% \label{fig:Comparison_GFD_FEM}
% \end{figure}
% \end{frame}
% \begin{frame}
% \begin{columns}
% \begin{column}{0.5\linewidth}
% \begin{itemize}
% \item We tried running GFDM on the coaxial problem many times to see if error decreases with higher resolution
% \item Low node count causes noise in the solution
% \item High node count shows a more stable and lower error solution
% \end{itemize}
% \end{column}
% \begin{column}{0.5\linewidth}
% \begin{figure}[h]
% \centering
% \includegraphics[width=0.95\textwidth]{Figures/Coax_GFDM_Nodes_Neighbors_RMS.png}
% \caption{RMS error of many independent GFDM solutions for the coaxial problem.}
% \label{fig:coax_gfdm_nodes_neighbors}
% \end{figure}
% \end{column}
% \end{columns}
% \end{frame}
% % \begin{frame}{FEM: Comparison with the potential field}
% % \begin{figure}
% % \centering
% % \includegraphics[scale=0.4]{Figures/ComparissonPotentialFEMCoaxial.png}
% % \caption{Potential field as function of the radial distance: Comparison between the analytical solution and the approximate solution using FEM.}
% % \label{fig:FEM_V_Sol}
% % \end{figure}
% % \end{frame}
% % \begin{frame}{GFD vs FEM}
% % \begin{figure}
% % \centering
% % \includegraphics[scale = 0.5]{Figures/ComparissonPotentialFEMGFD.png}
% % \caption{Caption}
% % \label{fig:enter-label}
% % \end{figure}
% % \end{frame}
% \subsection{Complex Geometries}
% % \begin{frame}{Two rectangle bars}
% % \begin{figure}
% % \centering
% % \includegraphics[scale = 0.4]{Figures/TwoBars.png}
% % \caption{Two Bars}
% % \label{fig:enter-label}
% % \end{figure}
% % \end{frame}
% \begin{frame}{Two conducting bars}
% \begin{figure}[h]
% \begin{columns}
% \begin{column}{0.5\linewidth}
% \includegraphics[width=0.95\textwidth]{Figures/Bars_GFDM.png}
% \end{column}
% \begin{column}{0.5\linewidth}
% \includegraphics[width=0.95\textwidth]{Figures/Bars_FEM.png}
% \end{column}
% \end{columns}
% \caption{Two conducting bars each held at 10.0 V with the bounding box grounded. \textbf{Left}: GFDM solution (5822 nodes). \textbf{Right}: FEM solution.}
% \label{fig:two_bars}
% \end{figure}
% \end{frame}
% \begin{frame}{Error for two conducting bars}
% \begin{columns}
% \begin{column}{0.5\linewidth}
% \begin{itemize}
% \item GFDM solution does well between the conductors
% \item Outside the conductors, the solution is not as good
% \item Solution is sensitive to irregularities in the mesh
% \end{itemize}
% \end{column}
% \begin{column}{0.5\linewidth}
% \begin{figure}[h]
% \includegraphics[width=0.95\textwidth]{Figures/Bars_Error.png}
% \caption{Error (GFDM - FEM) for the two conducting bars problem. RMS = 0.577}
% \label{fig:two_bars_error}
% \end{figure}
% \end{column}
% \end{columns}
% \end{frame}
% \begin{frame}{Conducting dolphin}
% \begin{figure}[h]
% \begin{columns}
% \begin{column}{0.5\linewidth}
% \includegraphics[width=0.95\textwidth]{Figures/Dolfin_GFDM.png}
% \end{column}
% \begin{column}{0.5\linewidth}
% \includegraphics[width=0.95\textwidth]{Figures/Dolfin_FEM.png}
% \end{column}
% \end{columns}
% \caption{Ideally conducting dolphin held at 10.0 V with the bottom boundary held at 5.0 V and other boundaries grounded. \textbf{Left}: GFDM solution (2868 nodes). \textbf{Right}: FEM solution.}
% \label{fig:dolfin}
% \end{figure}
% \end{frame}
% \begin{frame}{Conducting dolphin error}
% \begin{columns}
% \begin{column}{0.5\linewidth}
% \begin{itemize}
% \item Dolphin solution is not very good for GFDM compared to FEM
% \item Reason is unknown, sparseness of points far from the dolphin may be causing a problem
% \item Laplacian approximation failing may be the reason for poor solution throughout
% \end{itemize}
% \end{column}
% \begin{column}{0.5\linewidth}
% \begin{figure}[h]
% \includegraphics[width=0.95\textwidth]{Figures/Dolfin_Error.png}
% \caption{Error (GFDM - FEM) for the two conducting bars problem. RMS = 1.870}
% \label{fig:dolfin_error}
% \end{figure}
% \end{column}
% \end{columns}
% \end{frame}
% \begin{frame}{Conducting python}
% \begin{figure}[h]
% \begin{columns}
% \begin{column}{0.5\linewidth}
% \centering
% \includegraphics[width=0.80\textwidth]{Figures/Python_GFDM.png}
% \end{column}
% \begin{column}{0.5\linewidth}
% \centering
% \includegraphics[width=0.80\textwidth]{Figures/Python_FEM.png}
% \end{column}
% \end{columns}
% \caption{Ideally conducting python held at 10.0 V with the bounding box grounded. \textbf{Left:} GFDM solution (2201 nodes). \textbf{Right:} FEM solution.}
% \label{fig:python}
% \end{figure}
% \end{frame}
% \begin{frame}{Conducting python error}
% \begin{columns}
% \begin{column}{0.5\linewidth}
% \begin{itemize}
% \item Python solution performs well near the snake
% \item Some "hotspots" of error where the solver did not perform well
% \item Points of high error have boundaries that are near each other
% \item Perhaps the solver does not do well for quickly changing potentials
% \end{itemize}
% \end{column}
% \begin{column}{0.5\linewidth}
% \begin{figure}[h]
% \includegraphics[width=0.80\textwidth]{Figures/Python_Error.png}
% \caption{Error (GFDM - FEM) for the two conducting bars problem. RMS = 1.013} \label{fig:python_error}
% \end{figure}
% \end{column}
% \end{columns}
% \end{frame}
\section*{Bibliography}
\begin{frame}[allowframebreaks]{Bibliography}
\beamertemplatebookbibitems
\begin{thebibliography}{}
% \bibitem{NetworkX}HAGBERC, ARIC, SCHULT, DAN, S. \newblock \textquotedbl NetworkX.\textquotedbl{} \newblock Software Package.
% \bibitem{-}Harris, Charles R., et al. \newblock \textquotedbl Array programming with NumPy.\textquotedbl{} \newblock Nature 585.7825 (2020): 357-362.
% \bibitem{--}Landau, Rubin H., Manuel J. Páez, and Cristian C. Bordeianu. \newblock \textquotedbl Computational physics: Problem solving with Python\textquotedbl{} \newblock John Wiley & Sons, 2015.
% \bibitem{---}LSchlömer, N. \newblock \textquotedbl "pygalmesh: Python interface for CGAL’s meshing tools.\textquotedbl{} \newblock DOI: https://doi. org/10.5281/zenodo 5564818 (2021).
\bibitem{---} (*1)Faetti S and Palleschi V. 1984 The Journal of Chemical Physics 81 6254–6258.
\bibitem{---} (*2)de Mesquita O N 1998 Brazilian Journal of Physics 28 00–00.
\bibitem{---} (**)Palermo M F, Pizzirusso A, Muccioli L and Zannoni C 2013 The Journal of Chemical Physics 138 204901
\end{thebibliography}
\end{frame}
\end{document}