Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

float error #8

Open
guserone opened this issue Sep 2, 2020 · 1 comment
Open

float error #8

guserone opened this issue Sep 2, 2020 · 1 comment

Comments

@guserone
Copy link

guserone commented Sep 2, 2020


TypeError Traceback (most recent call last)
*******\dga_predict-master\run.py in
93
94 if name == "main":
---> 95 create_figs(nfolds=1) # Run with 1 to make it fast

*******\dga_predict-master\run.py in create_figs(isbigram, islstm, nfolds, force)
32 # Generate results if needed
33 if force or (not os.path.isfile(RESULT_FILE)):
---> 34 bigram_results, lstm_results = run_experiments(isbigram, islstm, nfolds)
35
36 results = {'bigram': bigram_results, 'lstm': lstm_results}

*******\dga_predict-master\run.py in run_experiments(isbigram, islstm, nfolds)
21
22 if isbigram:
---> 23 bigram_results = bigram.run(nfolds=nfolds)
24
25 if islstm:

*******\dga_predict-master\dga_classifier\bigram.py in run(max_epoch, nfolds, batch_size)
21 def run(max_epoch=50, nfolds=10, batch_size=128):
22 """Run train/test on logistic regression model"""
---> 23 indata = data.get_data()
24
25 # Extract data and labels

*******\dga_predict-master\dga_classifier\data.py in get_data(force)
128 def get_data(force=False):
129 """Returns data and labels"""
--> 130 gen_data(force)
131
132 return pickle.load(open(DATA_FILE))

*******\dga_predict-master\dga_classifier\data.py in gen_data(force)
118 """
119 if force or (not os.path.isfile(DATA_FILE)):
--> 120 domains, labels = gen_malicious(10000)
121
122 # Get equal number of benign/malicious

*******\dga_predict-master\dga_classifier\data.py in gen_malicious(num_per_dga)
46 segs_size = max(1, num_per_dga/len(banjori_seeds))
47 for banjori_seed in banjori_seeds:
---> 48 domains += banjori.generate_domains(segs_size, banjori_seed)
49 labels += ['banjori']*segs_size
50

*******\dga_predict-master\dga_classifier\dga_generators\banjori.py in generate_domains(nr_domains, seed)
14 ret = []
15
---> 16 for int i in range(nr_domains):
17 seed = next_domain(seed)
18

TypeError: 'float' object cannot be interpreted as an integer

i keep getting this error can anyone please help me i'm not familiar with python coding thanks in advance

@Sumsky21
Copy link

Sumsky21 commented Jan 11, 2022

#3
the same as this issue

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants