Skip to content

Latest commit

 

History

History
315 lines (267 loc) · 14.1 KB

aggregate.md

File metadata and controls

315 lines (267 loc) · 14.1 KB

聚合操作

  GraphX中提供的聚合操作有aggregateMessagescollectNeighborIdscollectNeighbors三个,其中aggregateMessagesGraphImpl中实现,collectNeighborIdscollectNeighborsGraphOps中实现。下面分别介绍这几个方法。

1 aggregateMessages

1.1 aggregateMessages接口

  aggregateMessagesGraphX最重要的API,用于替换mapReduceTriplets。目前mapReduceTriplets最终也是通过aggregateMessages来实现的。它主要功能是向邻边发消息,合并邻边收到的消息,返回messageRDDaggregateMessages的接口如下:

def aggregateMessages[A: ClassTag](
      sendMsg: EdgeContext[VD, ED, A] => Unit,
      mergeMsg: (A, A) => A,
      tripletFields: TripletFields = TripletFields.All)
    : VertexRDD[A] = {
    aggregateMessagesWithActiveSet(sendMsg, mergeMsg, tripletFields, None)
  }

  该接口有三个参数,分别为发消息函数,合并消息函数以及发消息的方向。

  • sendMsg: 发消息函数
private def sendMsg(ctx: EdgeContext[KCoreVertex, Int, Map[Int, Int]]): Unit = {
    ctx.sendToDst(Map(ctx.srcAttr.preKCore -> -1, ctx.srcAttr.curKCore -> 1))
    ctx.sendToSrc(Map(ctx.dstAttr.preKCore -> -1, ctx.dstAttr.curKCore -> 1))
}
  • mergeMsg:合并消息函数

  该函数用于在Map阶段每个edge分区中每个点收到的消息合并,并且它还用于reduce阶段,合并不同分区的消息。合并vertexId相同的消息。

  • tripletFields:定义发消息的方向

1.2 aggregateMessages处理流程

  aggregateMessages方法分为MapReduce两个阶段,下面我们分别就这两个阶段说明。

1.2.1 Map阶段

  从入口函数进入aggregateMessagesWithActiveSet函数,该函数首先使用VertexRDD[VD]更新replicatedVertexView, 只更新其中vertexRDDattr对象。如构建图中介绍的, replicatedVertexView是点和边的视图,点的属性有变化,要更新边中包含的点的attr

replicatedVertexView.upgrade(vertices, tripletFields.useSrc, tripletFields.useDst)
val view = activeSetOpt match {
    case Some((activeSet, _)) =>
      //返回只包含活跃顶点的replicatedVertexView
      replicatedVertexView.withActiveSet(activeSet)
    case None =>
      replicatedVertexView
}

  程序然后会对replicatedVertexViewedgeRDDmapPartitions操作,所有的操作都在每个边分区的迭代中完成,如下面的代码:

 val preAgg = view.edges.partitionsRDD.mapPartitions(_.flatMap {
      case (pid, edgePartition) =>
        // 选择 scan 方法
        val activeFraction = edgePartition.numActives.getOrElse(0) / edgePartition.indexSize.toFloat
        activeDirectionOpt match {
          case Some(EdgeDirection.Both) =>
            if (activeFraction < 0.8) {
              edgePartition.aggregateMessagesIndexScan(sendMsg, mergeMsg, tripletFields,
                EdgeActiveness.Both)
            } else {
              edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
                EdgeActiveness.Both)
            }
          case Some(EdgeDirection.Either) =>
            edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
              EdgeActiveness.Either)
          case Some(EdgeDirection.Out) =>
            if (activeFraction < 0.8) {
              edgePartition.aggregateMessagesIndexScan(sendMsg, mergeMsg, tripletFields,
                EdgeActiveness.SrcOnly)
            } else {
              edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
                EdgeActiveness.SrcOnly)
            }
          case Some(EdgeDirection.In) =>
            edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
              EdgeActiveness.DstOnly)
          case _ => // None
            edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
              EdgeActiveness.Neither)
        }
    })

  在分区内,根据activeFraction的大小选择是进入aggregateMessagesEdgeScan还是aggregateMessagesIndexScan处理。aggregateMessagesEdgeScan会顺序地扫描所有的边, 而aggregateMessagesIndexScan会先过滤源顶点索引,然后在扫描。我们重点去分析aggregateMessagesEdgeScan

def aggregateMessagesEdgeScan[A: ClassTag](
      sendMsg: EdgeContext[VD, ED, A] => Unit,
      mergeMsg: (A, A) => A,
      tripletFields: TripletFields,
      activeness: EdgeActiveness): Iterator[(VertexId, A)] = {
    var ctx = new AggregatingEdgeContext[VD, ED, A](mergeMsg, aggregates, bitset)
    var i = 0
    while (i < size) {
      val localSrcId = localSrcIds(i)
      val srcId = local2global(localSrcId)
      val localDstId = localDstIds(i)
      val dstId = local2global(localDstId)
      val srcAttr = if (tripletFields.useSrc) vertexAttrs(localSrcId) else null.asInstanceOf[VD]
      val dstAttr = if (tripletFields.useDst) vertexAttrs(localDstId) else null.asInstanceOf[VD]
      ctx.set(srcId, dstId, localSrcId, localDstId, srcAttr, dstAttr, data(i))
      sendMsg(ctx)
      i += 1
    }

  该方法由两步组成,分别是获得顶点相关信息,以及发送消息。

  • 获取顶点相关信息

  在前文介绍edge partition时,我们知道它包含localSrcIds,localDstIds, data, index, global2local, local2global, vertexAttrs这几个重要的数据结构。其中localSrcIds,localDstIds分别表示源顶点、目的顶点在当前分区中的索引。 所以我们可以遍历localSrcIds,根据其下标去localSrcIds中拿到srcId在全局local2global中的索引,最后拿到srcId。通过vertexAttrs拿到顶点属性。通过data拿到边属性。

  • 发送消息

  发消息前会根据接口中定义的tripletFields,拿到发消息的方向。发消息的过程就是遍历到一条边,向localSrcIds/localDstIds中添加数据,如果localSrcIds/localDstIds中已经存在该数据,则执行合并函数mergeMsg

 override def sendToSrc(msg: A) {
    send(_localSrcId, msg)
  }
  override def sendToDst(msg: A) {
    send(_localDstId, msg)
  }
  @inline private def send(localId: Int, msg: A) {
    if (bitset.get(localId)) {
      aggregates(localId) = mergeMsg(aggregates(localId), msg)
    } else {
      aggregates(localId) = msg
      bitset.set(localId)
    }
  }

  每个点之间在发消息的时候是独立的,即:点单纯根据方向,向以相邻点的以localId为下标的数组中插数据,互相独立,可以并行运行。Map阶段最后返回消息RDD messages: RDD[(VertexId, VD2)]

  Map阶段的执行流程如下例所示:

graphx_aggmsg_map

1.2.2 Reduce阶段

  Reduce阶段的实现就是调用下面的代码

vertices.aggregateUsingIndex(preAgg, mergeMsg)
override def aggregateUsingIndex[VD2: ClassTag](
      messages: RDD[(VertexId, VD2)], reduceFunc: (VD2, VD2) => VD2): VertexRDD[VD2] = {
    val shuffled = messages.partitionBy(this.partitioner.get)
    val parts = partitionsRDD.zipPartitions(shuffled, true) { (thisIter, msgIter) =>
      thisIter.map(_.aggregateUsingIndex(msgIter, reduceFunc))
    }
    this.withPartitionsRDD[VD2](parts)
  }

  上面的代码通过两步实现。

  • 1 对messages重新分区,分区器使用VertexRDDpartitioner。然后使用zipPartitions合并两个分区。

  • 2 对等合并attr, 聚合函数使用传入的mergeMsg函数

def aggregateUsingIndex[VD2: ClassTag](
      iter: Iterator[Product2[VertexId, VD2]],
      reduceFunc: (VD2, VD2) => VD2): Self[VD2] = {
    val newMask = new BitSet(self.capacity)
    val newValues = new Array[VD2](self.capacity)
    iter.foreach { product =>
      val vid = product._1
      val vdata = product._2
      val pos = self.index.getPos(vid)
      if (pos >= 0) {
        if (newMask.get(pos)) {
          newValues(pos) = reduceFunc(newValues(pos), vdata)
        } else { // otherwise just store the new value
          newMask.set(pos)
          newValues(pos) = vdata
        }
      }
    }
    this.withValues(newValues).withMask(newMask)
  }

  根据传参,我们知道上面的代码迭代的是messagePartition,并不是每个节点都会收到消息,所以messagePartition集合最小,迭代速度会快。

  这段代码表示,我们根据vetexIdindex中取到其下标pos,再根据下标,从values中取到attr,存在attr就用mergeMsg合并attr,不存在就直接赋值。

  Reduce阶段的过程如下图所示:

graphx_aggmsg_map

1.3 举例

  下面的例子计算比用户年龄大的追随者(即followers)的平均年龄。

// Import random graph generation library
import org.apache.spark.graphx.util.GraphGenerators
// Create a graph with "age" as the vertex property.  Here we use a random graph for simplicity.
val graph: Graph[Double, Int] =
  GraphGenerators.logNormalGraph(sc, numVertices = 100).mapVertices( (id, _) => id.toDouble )
// Compute the number of older followers and their total age
val olderFollowers: VertexRDD[(Int, Double)] = graph.aggregateMessages[(Int, Double)](
  triplet => { // Map Function
    if (triplet.srcAttr > triplet.dstAttr) {
      // Send message to destination vertex containing counter and age
      triplet.sendToDst(1, triplet.srcAttr)
    }
  },
  // Add counter and age
  (a, b) => (a._1 + b._1, a._2 + b._2) // Reduce Function
)
// Divide total age by number of older followers to get average age of older followers
val avgAgeOfOlderFollowers: VertexRDD[Double] =
  olderFollowers.mapValues( (id, value) => value match { case (count, totalAge) => totalAge / count } )
// Display the results
avgAgeOfOlderFollowers.collect.foreach(println(_))

2 collectNeighbors

  该方法的作用是收集每个顶点的邻居顶点的顶点id和顶点属性。

 def collectNeighbors(edgeDirection: EdgeDirection): VertexRDD[Array[(VertexId, VD)]] = {
    val nbrs = edgeDirection match {
      case EdgeDirection.Either =>
        graph.aggregateMessages[Array[(VertexId, VD)]](
          ctx => {
            ctx.sendToSrc(Array((ctx.dstId, ctx.dstAttr)))
            ctx.sendToDst(Array((ctx.srcId, ctx.srcAttr)))
          },
          (a, b) => a ++ b, TripletFields.All)
      case EdgeDirection.In =>
        graph.aggregateMessages[Array[(VertexId, VD)]](
          ctx => ctx.sendToDst(Array((ctx.srcId, ctx.srcAttr))),
          (a, b) => a ++ b, TripletFields.Src)
      case EdgeDirection.Out =>
        graph.aggregateMessages[Array[(VertexId, VD)]](
          ctx => ctx.sendToSrc(Array((ctx.dstId, ctx.dstAttr))),
          (a, b) => a ++ b, TripletFields.Dst)
      case EdgeDirection.Both =>
        throw new SparkException("collectEdges does not support EdgeDirection.Both. Use" +
          "EdgeDirection.Either instead.")
    }
    graph.vertices.leftJoin(nbrs) { (vid, vdata, nbrsOpt) =>
      nbrsOpt.getOrElse(Array.empty[(VertexId, VD)])
    }
  } 

  从上面的代码中,第一步是根据EdgeDirection来确定调用哪个aggregateMessages实现聚合操作。我们用满足条件EdgeDirection.Either的情况来说明。可以看到aggregateMessages的方式消息的函数为:

ctx => {
         ctx.sendToSrc(Array((ctx.dstId, ctx.dstAttr)))
         ctx.sendToDst(Array((ctx.srcId, ctx.srcAttr)))
      },

  这个函数在处理每条边时都会同时向源顶点和目的顶点发送消息,消息内容分别为(目的顶点id,目的顶点属性)(源顶点id,源顶点属性)。为什么会这样处理呢? 我们知道,每条边都由两个顶点组成,对于这个边,我需要向源顶点发送目的顶点的信息来记录它们之间的邻居关系,同理向目的顶点发送源顶点的信息来记录它们之间的邻居关系。

  Merge函数是一个集合合并操作,它合并同同一个顶点对应的所有目的顶点的信息。如下所示:

(a, b) => a ++ b

  通过aggregateMessages获得包含邻居关系信息的VertexRDD后,把它和现有的verticesjoin操作,得到每个顶点的邻居消息。

3 collectNeighborIds

  该方法的作用是收集每个顶点的邻居顶点的顶点id。它的实现和collectNeighbors非常相同。

def collectNeighborIds(edgeDirection: EdgeDirection): VertexRDD[Array[VertexId]] = {
    val nbrs =
      if (edgeDirection == EdgeDirection.Either) {
        graph.aggregateMessages[Array[VertexId]](
          ctx => { ctx.sendToSrc(Array(ctx.dstId)); ctx.sendToDst(Array(ctx.srcId)) },
          _ ++ _, TripletFields.None)
      } else if (edgeDirection == EdgeDirection.Out) {
        graph.aggregateMessages[Array[VertexId]](
          ctx => ctx.sendToSrc(Array(ctx.dstId)),
          _ ++ _, TripletFields.None)
      } else if (edgeDirection == EdgeDirection.In) {
        graph.aggregateMessages[Array[VertexId]](
          ctx => ctx.sendToDst(Array(ctx.srcId)),
          _ ++ _, TripletFields.None)
      } else {
        throw new SparkException("It doesn't make sense to collect neighbor ids without a " +
          "direction. (EdgeDirection.Both is not supported; use EdgeDirection.Either instead.)")
      }
    graph.vertices.leftZipJoin(nbrs) { (vid, vdata, nbrsOpt) =>
      nbrsOpt.getOrElse(Array.empty[VertexId])
    }
  } 

  和collectNeighbors的实现不同的是,aggregateMessages函数中的sendMsg函数只发送顶点Id到源顶点和目的顶点。其它的实现基本一致。

ctx => { ctx.sendToSrc(Array(ctx.dstId)); ctx.sendToDst(Array(ctx.srcId)) }

4 参考文献

【1】Graphx:构建graph和聚合消息

【2】spark源码