forked from xueleecs/SDNN-PPI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
attention_encoding.py
207 lines (148 loc) · 6.01 KB
/
attention_encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
import pandas as pd
from keras.layers import Dense, Input, Dropout, Conv1D, Reshape, MaxPooling1D, ZeroPadding1D, AveragePooling1D
from keras.layers import Add, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D
# from keras.layers import Conv1D
from keras.layers.merge import concatenate
from keras.optimizers import SGD
from keras.models import Model
from keras.regularizers import l2
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import RobustScaler
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import roc_curve
from keras.utils import np_utils
import matplotlib.pyplot as plt
from sklearn.metrics import roc_auc_score
import sklearn.metrics as metrics
from sklearn.metrics import confusion_matrix
from sklearn.metrics import matthews_corrcoef,accuracy_score, precision_score,recall_score
from sklearn.manifold import TSNE
from attention import *
from keras.initializers import glorot_uniform
from xgboost import XGBClassifier
import time
start = time.time()
def define_model():
########################################################"Channel-1" ########################################################
input_1 = Input(shape=(573, ), name='Protein_a')
p1 = Reshape((3, 191))(input_1)
##attention
d1 = p1.get_shape().as_list()
d1 = d1[2]
X = Self_Attention(d1)(p1)
# 均值池化
X = AveragePooling1D(pool_size=2, padding='same')(X)
########################################################"Channel-2" ########################################################
input_2 = Input(shape=(573, ), name='Protein_b')
p2 = Reshape((3, 191))(input_2)
##attention
d10 = p2.get_shape().as_list()
d10 = d10[2]
p2 = Self_Attention(d10)(p2)
# 均值池化
p2 = AveragePooling1D(pool_size=2, padding='same')(p2)
##################################### Merge Abstraction features ##################################################
merged = concatenate([X,p2], name='merged_protein1_2')
##################################### Prediction Module ##########################################################
merged = Flatten()(merged)
pre_output = Dense(64, activation='relu', kernel_initializer='glorot_normal', name='Merged_feature_1')(merged)
pre_output = Dense(32, activation='relu', kernel_initializer='glorot_normal', name='Merged_feature_2')(pre_output)
pre_output = Dense(16, activation='relu', kernel_initializer='he_uniform', name='Merged_feature_3')(pre_output)
pre_output=Dropout(0.2)(pre_output)
output = Dense(1, activation='sigmoid', name='output')(pre_output)
model = Model(input=[input_1, input_2], output=output)
sgd = SGD(lr=0.01, momentum=0.9, decay=0.001)
model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])
return model
##################################### Load Positive and Negative Dataset ##########################################################
df_pos = pd.read_csv('/P.csv', header=None)
df_neg = pd.read_csv('/N.csv', header=None)
df_neg['Status'] = 0
df_pos['Status'] = 1
df_neg=df_neg.sample(n=len(df_pos))
df = pd.concat([df_pos,df_neg])
df = df.reset_index()
df=df.sample(frac=1)
df = df.iloc[:,1:]
X = df.iloc[:,0:1146].values
y = df.iloc[:,1146:].values
Trainlabels=y
scaler = StandardScaler().fit(X)
#scaler = RobustScaler().fit(X)
X = scaler.transform(X)
X1_train = X[:, :573]
X2_train = X[:, 573:]
##################################### Five-fold Cross-Validation ##########################################################
kf=StratifiedKFold(n_splits=5)
accuracy1 = []
specificity1 = []
sensitivity1 = []
precision1=[]
recall1=[]
m_coef=[]
dnn_fpr_list=[]
dnn_tpr_list=[]
dnn_auc_list = []
o=0
max_accuracy=float("-inf")
dnn_fpr=None
dnn_tpr=None
for train, test in kf.split(X,y):
global model
model=define_model()
o=o+1
model.fit([X1_train[train],X2_train[train]],y[train],epochs=50,batch_size=64,verbose=1)
y_test=y[test]
y_score = model.predict([X1_train[test],X2_train[test]])
fpr, tpr, _= roc_curve(y_test, y_score)
auc = metrics.roc_auc_score(y_test, y_score)
dnn_auc_list.append(auc)
y_score=y_score[:,0]
for i in range(0,len(y_score)):
if(y_score[i]>0.5):
y_score[i]=1
else:
y_score[i]=0
cm1=confusion_matrix(y[test][:,0],y_score)
acc1 = accuracy_score(y[test][:,0], y_score, sample_weight=None)
spec1= (cm1[0,0])/(cm1[0,0]+cm1[0,1])
sens1 = recall_score(y[test][:,0], y_score, sample_weight=None)
prec1=precision_score(y[test][:,0], y_score, sample_weight=None)
sensitivity1.append(sens1)
specificity1.append(spec1)
accuracy1.append(acc1)
precision1.append(prec1)
coef=matthews_corrcoef(y[test], y_score, sample_weight=None)
m_coef.append(coef)
# dnn_fpr_list.append(fpr)
# dnn_tpr_list.append(tpr)
if acc1>max_accuracy:
max_accuracy=acc1
dnn_fpr=fpr[:]
dnn_tpr=tpr[:]
dnn_fpr=pd.DataFrame(dnn_fpr)
dnn_tpr=pd.DataFrame(dnn_tpr)
dnn_fpr.to_csv('fprDNN.csv',header=False, index=False)
dnn_tpr.to_csv('tprDNN.csv',header=False, index=False)
mean_acc1=np.mean(accuracy1)
std_acc1=np.std(accuracy1)
var_acc1=np.var(accuracy1)
print("Accuracy1:"+str(mean_acc1)+" ± "+str(std_acc1))
print("Accuracy_Var:"+str(mean_acc1)+" ± "+str(var_acc1))
mean_spec1=np.mean(specificity1)
std_spec1=np.std(specificity1)
print("Specificity1:"+str(mean_spec1)+" ± "+str(std_spec1))
mean_sens1=np.mean(sensitivity1)
std_sens1=np.std(sensitivity1)
print("Sensitivity1:"+str(mean_sens1)+" ± "+str(std_sens1))
mean_prec1=np.mean(precision1)
std_prec1=np.std(precision1)
print("Precison1:"+str(mean_prec1)+" ± "+str(std_prec1))
mean_coef=np.mean(m_coef)
std_coef=np.std(m_coef)
print("MCC1:"+str(mean_coef)+" ± "+str(std_coef))
print("AUC1:"+str(np.mean(dnn_auc_list)))
end1 = time.time()
end11=end1 - start
print(f"Runtime of the program is {end1 - start}")