Skip to content

Latest commit

 

History

History
230 lines (151 loc) · 8.53 KB

2.1.differential-expression.md

File metadata and controls

230 lines (151 loc) · 8.53 KB

2.1.Differential Expression

本章我们将:

  1. 理解和掌握基本的基因差异表达分析方法(Differential Expression Analysis);学会 Differential Expression Analysis 的基本软件。
  2. 使用 TopHatCufflinks 完成 Differential Expression Analysis。

1) Pipeline

2) Data Structure

2a) getting software & data

方法1: 使用docker

  1. software (already available in Docker,docker images的下载链接如附表所示)

    1. R & cummeRbund package (BioConductor)
    2. tophat
    3. bamtools
    4. cufflinks
  2. Data (already available in Docker)

    The Yeast RNA-seq data were downloaded from GSE42983,有两种条件,每种两个生物重复

    • wild-type : wt1.fq & wt2.fq
    • H2O2 treatment (oxidative stress): wt1X.fq & wt2X.fq

    We random sample 1M or 10K reads per sample, 10K reads are in /home/test/diff-exp/Raw_reads_10k of the Docker.

方法2: 自行下载和安装

  1. Install software:tophat,bamtools,cufflinks
  2. Dowload data: 下载链接

2b) input

format description Notes
.fastq RNA sequences of each sample raw data of RNA-seq
.fa sequences of the whole genome
.gff genome annotation file Default genome annotation file is from GENCODE, is similar to gtf file
.ebwt bowtie index file used to align RNA sequences to genome

2c) output

format description Notes
.bam genome mapped reads (binary format of sam) generated by align step
transcript.gtf assembled transcripts of each sample generated by assemble step
merged.gtf all annotation of assembled transcripts generated by merge step
txt/tsv differentially expressed genes generated by DE gene identify step
pdf R plot to explore differentially expressed genes generated by R package

cuffdiff output

format description
gene_exp.diff Differentially expressed genes
isoform_exp.diff Differentially expressed transcripts
cds_exp.diff Differentially expressed coding sequences
cds.diff Genes with differential CDS output
promoters.diff Genes with differential promoter use
splicing.diff Differentially spliced TSS groups
tss_group_exp.diff Differentially expressed TSS groups

3) Running Steps

和之前的章节一样,首先进入到docker容器:

docker exec -it bioinfo_tsinghua bash

以下步骤均在 /home/test/diff-exp/ 下进行:

cd /home/test/diff-exp/

3a) Align the RNA-seq reads to the genome

(1) map reads using Tophat

tophat maps short sequences from spliced transcripts to whole genome.

mkdir mapping

tophat -p 4 -G yeast_annotation.gff --no-coverage-search -o mapping/wt1_thout \
    bowtie_index/YeastGenome Raw_reads_10k/wt1.fq  

tophat -p 4 -G yeast_annotation.gff --no-coverage-search -o mapping/wt2_thout \
    bowtie_index/YeastGenome Raw_reads_10k/wt2.fq 

tophat -p 4 -G yeast_annotation.gff --no-coverage-search -o mapping/wt1X_thout \
    bowtie_index/YeastGenome Raw_reads_10k/wt1X.fq 

tophat -p 4 -G yeast_annotation.gff --no-coverage-search -o mapping/wt2X_thout \
    bowtie_index/YeastGenome Raw_reads_10k/wt2X.fq

用法:tophat [options] <bowtie_index> <reads1[,reads2,...]> [reads1[,reads2,...]]

  • -p/--num-threads default: 1
  • -G/--GTF GTF/GFF with known transcripts
  • -o/--output-dir default: ./tophat_out

(2) Extract mapped reads on chr I only (for quick running)

  • index .bam file

    index command generates index for .bam file

bamtools index -in mapping/wt1_thout/accepted_hits.bam 

bamtools index -in mapping/wt2_thout/accepted_hits.bam 

bamtools index -in mapping/wt1X_thout/accepted_hits.bam 

bamtools index -in mapping/wt2X_thout/accepted_hits.bam
  • extract

    filter command filters .bam files by user-specified criteria

bamtools filter -region chrI -in mapping/wt1_thout/accepted_hits.bam \
    -out mapping/wt1_thout/chrI.bam

bamtools filter -region chrI -in mapping/wt2_thout/accepted_hits.bam \
    -out mapping/wt2_thout/chrI.bam

bamtools filter -region chrI -in mapping/wt1X_thout/accepted_hits.bam \
    -out mapping/wt1X_thout/chrI.bam

bamtools filter -region chrI -in mapping/wt2X_thout/accepted_hits.bam \
    -out mapping/wt2X_thout/chrI.bam

3b) Assemble transcripts on Chr I by Cufflinks

(1) Assemble transcripts for each sample:

usage: cufflinks -p number_of_cores -o output_dir input_file

cufflinks -p 4 -o assembly/wt1_clout  mapping/wt1_thout/chrI.bam 

cufflinks -p 4 -o assembly/wt2_clout  mapping/wt2_thout/chrI.bam 

cufflinks -p 4 -o assembly/wt1X_clout mapping/wt1X_thout/chrI.bam 

cufflinks -p 4 -o assembly/wt2X_clout mapping/wt2X_thout/chrI.bam

(2) Create a file called assemblies.txt which lists the assembly files for each sample in the assembly folder. Its content is as follows:

assembly/wt1X_clout/transcripts.gtf
assembly/wt1_clout/transcripts.gtf
assembly/wt2X_clout/transcripts.gtf   
assembly/wt2_clout/transcripts.gtf

You can create that file manually by vim or use this command:
ls assembly/*/transcripts.gtf > assembly/assemblies.txt

(3) Merge all assemblies to one file containing merged transcripts:

cuffmerge takes two or more Cufflinks .gtf files and merges them into a single unified transcript catalog

cuffmerge -g yeast_chrI_annotation.gff -s bowtie_index/YeastGenome.fa \
    -p 4 -o assembly/merged assembly/assemblies.txt

3c) Identify differentially expressed genes and transcripts

we’ll use the output from 1M reads, not 10K reads

Run cuffdiff based on the merged transcripts and mapped reads for each sample

cuffdiff -o diff_expr -b bowtie_index/YeastGenome.fa \
    -p 4 -u assembly/merged/merged.gtf \
    mapping/wt1_thout/chrI.bam,mapping/wt2_thout/chrI.bam \
    mapping/wt1X_thout/chrI.bam,mapping/wt2X_thout/chrI.bam

参数意义:

  • -o: 输出文件夹
  • -b: Bowtie index
  • -p: 使用的线程数
  • -u: 转录本注释文件,一般使用 merge 得到的文件
  • 最后两行为每个样本的 .bam 文件,这里上一行为对照组,下一行为实验组,组内的不同样本用英文逗号分隔

This won’t generate sufficient result from 10K reads。You may view the results of 1M reads in 1M_reads_diff_expr to get a better feeling of the above command.

3d) Explore differential analysis results with CummeRbund package

由于 10k reads 结果太少,我们用 1M reads 的结果(已经预先跑好)来画图

Rscript  plot_DE_chart.R

图片可在 1M_reads_diff_expr 中查看。

Tips: input/output file is hard-coded in plot_DE_chart.R, if you want to plot your own results, you need to edit plot_DE_chart.R (replace 1M_reads_diff_expr/ with your own output directory of cutdiff).

4) Homework

  1. 提交差异表达的gene的 name,注明相关的fold change, p-value,FDR(q value) 等信息, 并提交绘制的 Volcano Plot。(基因列表和图最好放到一个word/pdf文件中提交)。

    • 使用教程中的数据,操作时,跳过3a)(2) Extract,(直接用accepted_hits.bam 来进行 Assemble transcripts),要求找到差异表达的基因(满足$$\lvert log_2(fold\ change) \rvert$$ > 1, FDR < 0.05)。
    • 差异表达的基因有的没有基因 name, 可以用 gene id 代替。
    • 画 Volcano Plot 时,需要将所有的基因进行绘图,包括未差异表达的基因。画图用 Appenddix. Plot with R 中 7 Volcano plots 的代码画图。
  2. 寻找 differentially expressed genes/transcripts时要对数据做怎样的处理?这些处理有哪些统计学上的考虑?

5) References