-
Notifications
You must be signed in to change notification settings - Fork 1
/
laik_vector_repart_overlapping.cc
106 lines (83 loc) · 3.47 KB
/
laik_vector_repart_overlapping.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include"laik_vector_repart_overlapping.h"
#include <laik_partitioners.h>
#include <lulesh.h>
#include <limits.h>
#include <type_traits>
#include <string.h>
// ////////////////////////////////////////////////////////////////////////
// implementation of laik_vector with overlapping partitioning (node partitioning)
// for repartitioning of overlapping data structs
// ////////////////////////////////////////////////////////////////////////
template <typename T>
laik_vector_repart_overlapping<T>::laik_vector_repart_overlapping(Laik_Instance *inst,
Laik_Group *world,
Laik_Space* indexSpace,
Laik_Partitioning *p1, Laik_Partitioning *p2, Laik_Transition* t1, Laik_Transition* t2, Laik_ReductionOperation operation):laik_vector<T>(inst,world, indexSpace, p1, p2, t1, t2, operation){}
template <typename T>
void laik_vector_repart_overlapping<T>::resize(int count){
int side = cbrt (laik_size(this->world));
int s = (int) ((cbrt (count) - 1 ) / side + 1 + 0.1 );
s = s*s*s;
data_vector.resize(s);
this -> size = count;
if (std::is_same <T, double>::value) {
this->data = laik_new_data(this->indexSpace, laik_Double );
}
else if (std::is_same <T, int>::value){
this->data = laik_new_data(this->indexSpace, laik_Int64 );
}
laik_switchto_partitioning(this->data, this->p1, LAIK_DF_None, LAIK_RO_Min);
Laik_TaskRange* tr = laik_my_range(this->p1, 0);
const Laik_Range* r = laik_taskrange_get_range(tr);
this -> count = laik_range_size(r);
}
template <typename T>
T* laik_vector_repart_overlapping<T>::calc_pointer(int idx, int state){
return nullptr;
}
template <typename T>
void laik_vector_repart_overlapping<T>::precalculate_base_pointers(){
}
template <typename T>
void laik_vector_repart_overlapping<T>::switch_to_p1(){
}
template <typename T>
void laik_vector_repart_overlapping<T>::switch_to_p2(){
}
template <typename T>
void laik_vector_repart_overlapping<T>::migrate(Laik_Group* new_group, Laik_Partitioning* p_new_1, Laik_Partitioning* p_new_2, Laik_Transition* t_new_1, Laik_Transition* t_new_2){
uint64_t cnt;
T* base;
this -> state = 0;
laik_switchto_partitioning(this->data, this->p1, LAIK_DF_None, LAIK_RO_Min);
// copy the data from stl vector into the laik container
int nRanges = laik_my_rangecount(this->p1);
for (int n = 0; n < nRanges; n++)
{
laik_get_map_1d(this->data, n, (void **)&base, &cnt);
memcpy(base, &data_vector[0] + n*cnt, cnt*sizeof(T));
//std::copy( base, base + cnt, data_vector.begin() + n*count );
}
// perform switches for communication
laik_switchto_partitioning(this->data, p_new_1, LAIK_DF_Preserve, LAIK_RO_Min);
this -> world = new_group;
if (laik_myid(this->world)<0)
return ;
this -> p1=p_new_1;
this -> p2=p_new_2;
this -> t1=t_new_1;
this -> t2=t_new_2;
// resize vector
laik_get_map_1d(this->data, 0, (void **)&base, &cnt);
int s = cnt*cnt*cnt;
data_vector.resize(s);
// copy the data back into the stl vecotrs
nRanges = laik_my_rangecount(this->p1);
for (int n = 0; n < nRanges; n++)
{
laik_get_map_1d(this->data, n, (void **)&base, &cnt);
memcpy(&data_vector[0] + n*cnt, base, cnt*sizeof(T));
//std::copy(data_vector.begin() + n*count ,data_vector.begin() + (n+1)*count-1 , base);
}
}
template class laik_vector_repart_overlapping<double>;