-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_average.py
100 lines (73 loc) · 2.5 KB
/
get_average.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
/* Modification of Masstree
* VLSC Laboratory
* Copyright (c) 2018-2019 Ecole Polytechnique Federale de Lausanne
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, subject to the conditions
* listed in the Masstree LICENSE file. These conditions include: you must
* preserve this copyright notice, and you cannot mention the copyright
* holders in advertising related to the Software without their permission.
* The Software is provided WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED. This
* notice is a summary of the Masstree LICENSE file; the license in that file
* is legally binding.
*/
"""
import json
import sys
import numpy as np
def get_notebook():
text = "notebook-mttest.json"
with open(text, 'r') as f:
json_obj = json.load(f)
data = json_obj["data"]
return data
class Trial:
def __init__(self):
self.values = []
def add_val(self, val):
self.values.append(val)
def get_avg(self):
return np.mean(self.values)
def get_sum(self):
return sum(self.values)
def get_max(self):
return max(self.values)
class Stats:
def __init__(self):
self.trials = []
def add(self, i, val):
if len(self.trials) == i:
self.trials.append(Trial())
self.trials[i].add_val(val)
def get_sum(self):
return np.mean([t.get_sum() for t in self.trials])
def get_sum_std(self):
return np.std([t.get_sum() for t in self.trials])
def get_avg(self):
return np.mean([t.get_avg() for t in self.trials])
def get_max(self):
return np.mean([t.get_max() for t in self.trials])
def get_stats(data):
op_stats = Stats()
for i, run in enumerate(data):
for thread_run in data[run]:
ops = thread_run["ops"]
op_stats.add(i, ops)
return op_stats
def analyze_ops_stats():
params = sys.argv[1] if len(sys.argv) > 1 else None
sf = "{},{},{},{},{}" if params else "{},{},{},{}"
data = get_notebook()
all_stats = get_stats(data)
op_stats = all_stats
op_stat_sum = op_stats.get_sum()
op_stat_avg = op_stats.get_avg()
op_stat_sum_std = op_stats.get_sum_std()
op_stat_stdp = op_stat_sum_std / op_stat_sum
s = sf.format(op_stat_sum, op_stat_avg, op_stat_sum_std, op_stat_stdp,
params)
print(s)
if __name__ == '__main__':
analyze_ops_stats()