From 2b596aa01908c0fffbe52980682235cd91f96a94 Mon Sep 17 00:00:00 2001 From: nikosbosse <37978797+nikosbosse@users.noreply.github.com> Date: Thu, 31 Oct 2024 14:11:01 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20epiforec?= =?UTF-8?q?asts/scoringutils@10a5c648172db14033a16de0d5c817d24cebc609=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- index.html | 6 +++--- pkgdown.yml | 2 +- reference/get_metrics.forecast_binary.html | 8 ++++---- reference/get_metrics.forecast_nominal.html | 2 +- reference/get_metrics.forecast_point.html | 2 +- reference/get_metrics.forecast_quantile.html | 2 +- reference/get_metrics.forecast_sample.html | 18 +++++++++--------- reference/select_metrics.html | 4 ++-- search.json | 2 +- 9 files changed, 23 insertions(+), 23 deletions(-) diff --git a/index.html b/index.html index 3ba93260..9a6b5e08 100644 --- a/index.html +++ b/index.html @@ -84,13 +84,13 @@
scoringutils
currently supports scoring the following forecast types: - binary
: a probability for a binary (yes/no) outcome variable. - point
: a forecast for a continuous or discrete outcome variable that is represented by a single number. - quantile
: a probabilistic forecast for a continuous or discrete outcome variable, with the forecast distribution represented by a set of predictive quantiles. - sample
: a probabilistic forecast for a continuous or discrete outcome variable, with the forecast represented by a finite set of samples drawn from the predictive distribution.
scoringutils
currently supports scoring the following forecast types: - binary
: a probability for a binary (yes/no) outcome variable. - point
: a forecast for a continuous or discrete outcome variable that is represented by a single number. - quantile
: a probabilistic forecast for a continuous or discrete outcome variable, with the forecast distribution represented by a set of predictive quantiles. - sample
: a probabilistic forecast for a continuous or discrete outcome variable, with the forecast represented by a finite set of samples drawn from the predictive distribution. - nominal
categorical forecast with unordered outcome possibilities (generalisation of binary forecasts to multiple outcomes)
The expected input format is generally a data.frame
(or similar) with required columns observed
, predicted
, and model
that holds the forecasts and observed values. Exact requirements depend on the forecast type. For more information, have a look at the paper, call ?as_forecast()
, or have a look at the example data provided in the package (example_binary
, example_point
, example_quantile
, example_sample_continuous
, example_sample_discrete
).
Before scoring, input data needs to be validated and transformed into a forecast object using the function as_forecast()
.
The expected input format is generally a data.frame
(or similar) with required columns observed
, and predicted
that holds the forecasts and observed values. Exact requirements depend on the forecast type. For more information, have a look at the paper, call ?as_forecast_binary
, ?as_forecast_quantile
etc., or have a look at the example data provided in the package (example_binary
, example_point
, example_quantile
, example_sample_continuous
, example_sample_discrete
, example_nominal
).
Before scoring, input data needs to be validated and transformed into a forecast object using one of the as_forecast_<type>()
functions.
forecast_quantile <- example_quantile |>
as_forecast_quantile(
diff --git a/pkgdown.yml b/pkgdown.yml
index a4b4724e..7c5d183c 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -5,7 +5,7 @@ articles:
Deprecated-functions: Deprecated-functions.html
Deprecated-visualisations: Deprecated-visualisations.html
scoring-rules: scoring-rules.html
-last_built: 2024-10-31T14:06Z
+last_built: 2024-10-31T14:10Z
urls:
reference: https://epiforecasts.io/scoringutils/reference
article: https://epiforecasts.io/scoringutils/articles
diff --git a/reference/get_metrics.forecast_binary.html b/reference/get_metrics.forecast_binary.html
index 811e49d2..7892be7f 100644
--- a/reference/get_metrics.forecast_binary.html
+++ b/reference/get_metrics.forecast_binary.html
@@ -112,7 +112,7 @@ Examples#> brierscore <- (observed - predicted)^2
#> return(brierscore)
#> }
-#> <bytecode: 0x5580d75985a0>
+#> <bytecode: 0x5592f41612a8>
#> <environment: namespace:scoringutils>
#>
#> $log_score
@@ -123,7 +123,7 @@ Examples#> logs <- -log(1 - abs(observed - predicted))
#> return(logs)
#> }
-#> <bytecode: 0x5580d759b598>
+#> <bytecode: 0x5592f41642a0>
#> <environment: namespace:scoringutils>
#>
get_metrics(example_binary, select = "brier_score")
@@ -135,7 +135,7 @@ Examples#> brierscore <- (observed - predicted)^2
#> return(brierscore)
#> }
-#> <bytecode: 0x5580d75985a0>
+#> <bytecode: 0x5592f41612a8>
#> <environment: namespace:scoringutils>
#>
get_metrics(example_binary, exclude = "log_score")
@@ -147,7 +147,7 @@ Examples#> brierscore <- (observed - predicted)^2
#> return(brierscore)
#> }
-#> <bytecode: 0x5580d75985a0>
+#> <bytecode: 0x5592f41612a8>
#> <environment: namespace:scoringutils>
#>