diff --git a/README.md b/README.md index 52f57dcfb..8f532c320 100644 --- a/README.md +++ b/README.md @@ -167,17 +167,21 @@ example_quantile %>% #> Some rows containing NA values may be removed. This is fine if not unexpected. #> Some rows containing NA values may be removed. This is fine if not unexpected. #> Some rows containing NA values may be removed. This is fine if not unexpected. +#> Warning in get_score_names(scores, error = TRUE): The following scores have +#> been previously computed, but are no longer column names of the data: +#> `interval_coverage, quantile_coverage, quantile_coverage_deviation`. See +#> `?get_score_names` for further information. ``` -| model | target_type | wis | overprediction | underprediction | dispersion | bias | interval_coverage_50 | interval_coverage_90 | interval_coverage_deviation | ae_median | relative_skill | scaled_rel_skill | -|:----------------------|:------------|------:|---------------:|----------------:|-----------:|--------:|---------------------:|---------------------:|----------------------------:|----------:|---------------:|-----------------:| -| EuroCOVIDhub-baseline | Cases | 28000 | 14000.0 | 10000.0 | 4100 | 0.0980 | 0.33 | 0.82 | -0.120 | 38000 | 1.30 | 1.6 | -| EuroCOVIDhub-baseline | Deaths | 160 | 66.0 | 2.1 | 91 | 0.3400 | 0.66 | 1.00 | 0.120 | 230 | 2.30 | 3.8 | -| EuroCOVIDhub-ensemble | Cases | 18000 | 10000.0 | 4200.0 | 3700 | -0.0560 | 0.39 | 0.80 | -0.100 | 24000 | 0.82 | 1.0 | -| EuroCOVIDhub-ensemble | Deaths | 41 | 7.1 | 4.1 | 30 | 0.0730 | 0.88 | 1.00 | 0.200 | 53 | 0.60 | 1.0 | -| UMass-MechBayes | Deaths | 53 | 9.0 | 17.0 | 27 | -0.0220 | 0.46 | 0.88 | -0.025 | 78 | 0.75 | 1.3 | -| epiforecasts-EpiNow2 | Cases | 21000 | 12000.0 | 3300.0 | 5700 | -0.0790 | 0.47 | 0.79 | -0.070 | 28000 | 0.95 | 1.2 | -| epiforecasts-EpiNow2 | Deaths | 67 | 19.0 | 16.0 | 32 | -0.0051 | 0.42 | 0.91 | -0.045 | 100 | 0.98 | 1.6 | +| model | target_type | wis | overprediction | underprediction | dispersion | bias | interval_coverage_50 | interval_coverage_90 | interval_coverage_deviation | ae_median | wis_relative_skill | wis_scaled_relative_skill | +|:----------------------|:------------|------:|---------------:|----------------:|-----------:|--------:|---------------------:|---------------------:|----------------------------:|----------:|-------------------:|--------------------------:| +| EuroCOVIDhub-baseline | Cases | 28000 | 14000.0 | 10000.0 | 4100 | 0.0980 | 0.33 | 0.82 | -0.120 | 38000 | 1.30 | 1.6 | +| EuroCOVIDhub-baseline | Deaths | 160 | 66.0 | 2.1 | 91 | 0.3400 | 0.66 | 1.00 | 0.120 | 230 | 2.30 | 3.8 | +| EuroCOVIDhub-ensemble | Cases | 18000 | 10000.0 | 4200.0 | 3700 | -0.0560 | 0.39 | 0.80 | -0.100 | 24000 | 0.82 | 1.0 | +| EuroCOVIDhub-ensemble | Deaths | 41 | 7.1 | 4.1 | 30 | 0.0730 | 0.88 | 1.00 | 0.200 | 53 | 0.60 | 1.0 | +| UMass-MechBayes | Deaths | 53 | 9.0 | 17.0 | 27 | -0.0220 | 0.46 | 0.88 | -0.025 | 78 | 0.75 | 1.3 | +| epiforecasts-EpiNow2 | Cases | 21000 | 12000.0 | 3300.0 | 5700 | -0.0790 | 0.47 | 0.79 | -0.070 | 28000 | 0.95 | 1.2 | +| epiforecasts-EpiNow2 | Deaths | 67 | 19.0 | 16.0 | 32 | -0.0051 | 0.42 | 0.91 | -0.045 | 100 | 0.98 | 1.6 | `scoringutils` contains additional functionality to transform forecasts, to summarise scores at different levels, to visualise them, and to @@ -200,6 +204,7 @@ example_quantile %>% summarise_scores(by = c("model", "target_type", "scale")) %>% head() #> Some rows containing NA values may be removed. This is fine if not unexpected. +#> Some rows containing NA values may be removed. This is fine if not unexpected. #> model target_type scale wis overprediction #> 1: EuroCOVIDhub-ensemble Cases natural 11550.70664 3650.004755 #> 2: EuroCOVIDhub-baseline Cases natural 22090.45747 7702.983696