diff --git a/R/class-forecast-binary.R b/R/class-forecast-binary.R index 6aebbf15..d7605782 100644 --- a/R/class-forecast-binary.R +++ b/R/class-forecast-binary.R @@ -23,7 +23,7 @@ as_forecast_binary <- function(data, #' @importFrom cli cli_abort #' @keywords validate-forecast-object assert_forecast.forecast_binary <- function( - forecast, forecast_type = NULL, verbose = TRUE, ... + forecast, forecast_type = NULL, verbose = TRUE, ... ) { forecast <- assert_forecast_generic(forecast, verbose) assert_forecast_type(forecast, actual = "binary", desired = forecast_type) diff --git a/R/class-forecast-nominal.R b/R/class-forecast-nominal.R index 5244fa1d..47ec2987 100644 --- a/R/class-forecast-nominal.R +++ b/R/class-forecast-nominal.R @@ -2,7 +2,7 @@ #' @keywords check-forecasts #' @importFrom checkmate assert_names assert_set_equal test_set_equal assert_forecast.forecast_nominal <- function( - forecast, forecast_type = NULL, verbose = TRUE, ... + forecast, forecast_type = NULL, verbose = TRUE, ... ) { forecast <- assert_forecast_generic(forecast, verbose) assert(check_columns_present(forecast, "predicted_label")) diff --git a/R/class-forecast-point.R b/R/class-forecast-point.R index 01a23e42..30a83648 100644 --- a/R/class-forecast-point.R +++ b/R/class-forecast-point.R @@ -3,7 +3,7 @@ #' @importFrom cli cli_abort #' @keywords validate-forecast-object assert_forecast.forecast_point <- function( - forecast, forecast_type = NULL, verbose = TRUE, ... + forecast, forecast_type = NULL, verbose = TRUE, ... ) { forecast <- assert_forecast_generic(forecast, verbose) assert_forecast_type(forecast, actual = "point", desired = forecast_type) diff --git a/R/class-forecast-quantile.R b/R/class-forecast-quantile.R index 4b8f75a8..8992ecb8 100644 --- a/R/class-forecast-quantile.R +++ b/R/class-forecast-quantile.R @@ -94,7 +94,7 @@ score.forecast_quantile <- function(forecast, metrics = get_metrics(forecast), . #' @rdname assert_forecast #' @keywords validate-forecast-object assert_forecast.forecast_quantile <- function( - forecast, forecast_type = NULL, verbose = TRUE, ... + forecast, forecast_type = NULL, verbose = TRUE, ... ) { forecast <- assert_forecast_generic(forecast, verbose) assert_forecast_type(forecast, actual = "quantile", desired = forecast_type) @@ -186,12 +186,13 @@ get_pit.forecast_quantile <- function(forecast, by, ...) { quantile_coverage <- forecast[, .(quantile_coverage = mean(quantile_coverage)), by = c(unique(c(by, "quantile_level")))] - quantile_coverage <- quantile_coverage[order(quantile_level), - .( - quantile_level = c(quantile_level, 1), - pit_value = diff(c(0, quantile_coverage, 1)) - ), - by = c(get_forecast_unit(quantile_coverage)) + quantile_coverage <- quantile_coverage[ + order(quantile_level), + .( + quantile_level = c(quantile_level, 1), + pit_value = diff(c(0, quantile_coverage, 1)) + ), + by = c(get_forecast_unit(quantile_coverage)) ] return(quantile_coverage[]) } diff --git a/R/class-forecast-sample.R b/R/class-forecast-sample.R index edd0f839..e625194e 100644 --- a/R/class-forecast-sample.R +++ b/R/class-forecast-sample.R @@ -2,7 +2,7 @@ #' @rdname assert_forecast #' @keywords validate-forecast-object assert_forecast.forecast_sample <- function( - forecast, forecast_type = NULL, verbose = TRUE, ... + forecast, forecast_type = NULL, verbose = TRUE, ... ) { forecast <- assert_forecast_generic(forecast, verbose) assert_forecast_type(forecast, actual = "sample", desired = forecast_type) @@ -61,10 +61,10 @@ is_forecast_sample <- function(x) { #' @importFrom checkmate assert_numeric #' @export as_forecast_quantile.forecast_sample <- function( - data, - probs = c(0.05, 0.25, 0.5, 0.75, 0.95), - type = 7, - ... + data, + probs = c(0.05, 0.25, 0.5, 0.75, 0.95), + type = 7, + ... ) { forecast <- copy(data) assert_forecast(forecast, verbose = FALSE) @@ -175,9 +175,10 @@ get_pit.forecast_sample <- function(forecast, by, n_replicates = 100, ...) { forecast <- as.data.table(forecast) # if prediction type is not quantile, calculate PIT values based on samples - forecast_wide <- data.table::dcast(forecast, - ... ~ paste0("InternalSampl_", sample_id), - value.var = "predicted" + forecast_wide <- data.table::dcast( + forecast, + ... ~ paste0("InternalSampl_", sample_id), + value.var = "predicted" ) pit <- forecast_wide[, .(pit_value = pit_sample( diff --git a/R/get-coverage.R b/R/get-coverage.R index 0f82245d..e410f2f6 100644 --- a/R/get-coverage.R +++ b/R/get-coverage.R @@ -69,7 +69,7 @@ get_coverage <- function(forecast, by = "model") { # convert to wide interval format and compute interval coverage -------------- interval_forecast <- quantile_to_interval(forecast, format = "wide") interval_forecast[, - interval_coverage := (observed <= upper) & (observed >= lower) + interval_coverage := (observed <= upper) & (observed >= lower) ][, c("lower", "upper", "observed") := NULL] interval_forecast[, interval_coverage_deviation := interval_coverage - interval_range / 100] diff --git a/R/get-duplicate-forecasts.R b/R/get-duplicate-forecasts.R index e66fe5a7..e3c42646 100644 --- a/R/get-duplicate-forecasts.R +++ b/R/get-duplicate-forecasts.R @@ -17,9 +17,9 @@ #' example <- rbind(example_quantile, example_quantile[1000:1010]) #' get_duplicate_forecasts(example) get_duplicate_forecasts <- function( - data, - forecast_unit = NULL, - counts = FALSE + data, + forecast_unit = NULL, + counts = FALSE ) { assert_data_frame(data) data <- ensure_data.table(data) diff --git a/R/utils.R b/R/utils.R index 180a6e07..3fb4a859 100644 --- a/R/utils.R +++ b/R/utils.R @@ -217,4 +217,3 @@ get_protected_columns <- function(data = NULL) { return(protected_columns) } -