diff --git a/R/class-forecast-ordinal.R b/R/class-forecast-ordinal.R index def81c61..a4e8eec0 100644 --- a/R/class-forecast-ordinal.R +++ b/R/class-forecast-ordinal.R @@ -150,7 +150,7 @@ score.forecast_ordinal <- function(forecast, metrics = get_metrics(forecast), .. #' Get default metrics for nominal forecasts #' @inheritParams get_metrics.forecast_binary #' @description -#' For nominal forecasts, the default scoring rule is: +#' For ordinal forecasts, the default scoring rules are: #' - "log_score" = [logs_nominal()] #' - "rps" = [rps_ordinal()] #' @export diff --git a/R/metrics-ordinal.R b/R/metrics-ordinal.R index c875a94e..a5d9a04b 100644 --- a/R/metrics-ordinal.R +++ b/R/metrics-ordinal.R @@ -117,7 +117,7 @@ logs_ordinal <- function(observed, predicted, predicted_label) { #' The Ranked Probability Score (RPS) measures the difference between the predicted #' and observed cumulative distribution functions. It is a proper scoring rule that #' takes the ordering of categories into account. Small values are better -#' (best is zero, worst is 1). +#' (best is zero, worst is N - 1 where N is the number of categories). #' @param observed A factor of length n with N levels holding the observed #' values. #' @param predicted nxN matrix of predictive probabilities, n (number of rows) @@ -133,14 +133,15 @@ logs_ordinal <- function(observed, predicted, predicted_label) { #' @keywords metric #' @family scoring functions #' @examples -#' factor_levels <- c("one", "three", "two") +#' factor_levels <- c("one", "two", "three") #' predicted_label <- factor(factor_levels, levels = factor_levels, ordered = TRUE) #' observed <- factor(c("three", "three", "two"), levels = factor_levels, ordered = TRUE) #' predicted <- matrix( -#' c(0.8, 0.1, 0.4, -#' 0.1, 0.2, 0.4, -#' 0.1, 0.7, 0.2), -#' nrow = 3 +#' c(0.8, 0.1, 0.1, +#' 0.1, 0.2, 0.7, +#' 0.4, 0.4, 0.2), +#' nrow = 3, +#' byrow = TRUE #' ) #' rps_ordinal(observed, predicted, predicted_label) rps_ordinal <- function(observed, predicted, predicted_label) {