-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsklearn_binary_quality_estimator.py
170 lines (143 loc) · 6.11 KB
/
sklearn_binary_quality_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from cross_validation_generator import get_folds
from human_id import generate_id
import numpy as np
from sklearn.utils import shuffle
from sklearn.metrics import accuracy_score
import pickle
from statistics import mean
CROSS_VAL = 10
FEATURE_TYPE = "feature-streams" # embeddings-ge2e, embeddings-trill, feature-streams (embeddings dir name)
FEATURE_DIR = "split-10" # split-10, ... (subdir name in ./wavs)
METHOD = 'KNN' # KNN, RF
def predict(save_predictions=False, n_neighbors=310, max_depth=20, remove_middle=False):
generator = get_folds(FEATURE_TYPE, FEATURE_DIR, timeseries=False, folds=CROSS_VAL, seed=21)
run_name = generate_id(word_count=3)
print(f"Starting run {run_name}-{METHOD} ...")
acc_per_fold = []
predictions = []
truths = []
for i in range(1, CROSS_VAL + 1):
start_message = f"Starting cross validation {i}/{CROSS_VAL} for param {'k=' + str(n_neighbors) if METHOD == 'KNN' else 'max_depth=' + str(max_depth)}"
print('-'*len(start_message))
print(start_message)
print('-'*len(start_message))
x_train, y_train, x_val, y_val = next(generator)
print(f'Created folds for iteration {i}')
if remove_middle:
print(len(x_train))
print(len(y_train))
print('removing middle values from train set')
x_train_new = []
y_train_new = []
for i in range(len(x_train)):
if y_train[i] <= 0.333 or y_train[i] >= 0.666:
x_train_new += [x_train[i]]
y_train_new += [y_train[i]]
print(len(x_train_new))
print(len(y_train_new))
print(len(x_val))
print(len(y_val))
print('removing middle values from val set')
x_val_new = []
y_val_new = []
for i in range(len(x_val)):
if y_val[i] <= 0.333 or y_val[i] >= 0.666:
x_val_new += [x_val[i]]
y_val_new += [y_val[i]]
print(len(x_val_new))
print(len(y_val_new))
x_train = x_train_new
x_val = x_val_new
y_train = y_train_new
y_val = y_val_new
x_train = np.array(x_train)
x_val = np.array(x_val)
y_train = np.rint(y_train)
y_val = np.rint(y_val)
x_train, y_train = shuffle(x_train, y_train)
if METHOD == 'KNN':
knn = KNeighborsClassifier(n_neighbors=n_neighbors)
knn.fit(x_train, y_train)
prediction = knn.predict(x_val)
elif METHOD == 'RF':
rf = RandomForestClassifier(max_depth=max_depth)
rf.fit(x_train, y_train)
prediction = rf.predict(x_val)
acc = accuracy_score(y_val, prediction)
# acc = accuracy_score(y_val, np.random.randint(2, size=len(y_val))) # replace predictions by random classes to simulate random guessing
print(f'Accuracy for fold {i}: {acc}\n')
predictions += [prediction.flatten().tolist()]
acc_per_fold += [acc]
truths += [y_val.flatten().tolist()]
avg_loss = mean(acc_per_fold)
result = f"| Average accuracy for {'k=' + str(n_neighbors) if METHOD == 'KNN' else 'max_depth=' + str(max_depth)}: {avg_loss} |"
print(f'Accuracy per fold: {acc_per_fold}')
print()
print('-'*len(result))
print(result)
print('-'*len(result))
if save_predictions:
predictionsname = f"predictions/{FEATURE_TYPE}-CLASS-{avg_loss:.4f}-{run_name}.pickle"
pickle.dump((predictions, truths), open(predictionsname, "wb"))
print(f'Saved predictions as {predictionsname}')
model = KNeighborsClassifier(n_neighbors=n_neighbors)
x_train, y_train, x_val, y_val = next(
get_folds(FEATURE_TYPE, FEATURE_DIR, timeseries=False, folds=CROSS_VAL, seed=21))
if remove_middle:
print(len(x_train))
print(len(y_train))
print('removing middle values from train set')
x_train_new = []
y_train_new = []
for i in range(len(x_train)):
if y_train[i] <= 0.333 or y_train[i] >= 0.666:
x_train_new += [x_train[i]]
y_train_new += [y_train[i]]
print(len(x_train_new))
print(len(y_train_new))
print(len(x_val))
print(len(y_val))
print('removing middle values from val set')
x_val_new = []
y_val_new = []
for i in range(len(x_val)):
if y_val[i] <= 0.333 or y_val[i] >= 0.666:
x_val_new += [x_val[i]]
y_val_new += [y_val[i]]
print(len(x_val_new))
print(len(y_val_new))
x_train = x_train_new
x_val = x_val_new
y_train = y_train_new
y_val = y_val_new
x_train = np.array(x_train)
x_val = np.array(x_val)
y_train = np.rint(y_train)
y_val = np.rint(y_val)
print(len(x_train[0]))
print(len(x_val[0]))
print(y_train[0])
print(y_val[0])
x = np.concatenate((x_train, x_val))
y = np.concatenate((y_train, y_val))
model.fit(x, y)
modelname = f"models/{FEATURE_TYPE}-CLASS-{'NOMIDDLE' if remove_middle else 'FULL'}-{avg_loss:.4f}-{run_name}.pickle"
pickle.dump(model, open(modelname, "wb"))
print(f'Saved model as {modelname}')
return avg_loss
def hyperparameter_search(start, end, stride):
print(f'Hyperparameter search for {METHOD} from {start} to {end} in steps of {stride}')
params = []
loss_per_param = []
for p in range(start, end+stride, stride): # (10, 1010, 10) for k hyperparameter search from 10 to 1000 in steps of 10
print(f'\n\nParameter: {p}/{end}')
avg_acc = predict(n_neighbors=p) if METHOD == 'KNN' else predict(max_depth=p)
params += [p]
loss_per_param += [avg_acc]
print(params)
print(loss_per_param)
# predict(max_depth=6)
predict(n_neighbors=200)
# hyperparameter_search(221, 321, 20)