From 354faf55e0a35b321126c79149fbd8eed16b708b Mon Sep 17 00:00:00 2001 From: geirev Date: Mon, 2 Dec 2019 23:58:19 +0100 Subject: [PATCH] Added support in IES_ENKF for using newly activated observations and fixed nrobs bug in extract_active_observations --- lib/analysis/modules/ies_enkf.c | 121 ++++++------------- lib/analysis/modules/ies_enkf_data.c | 64 ++++++++-- lib/analysis/modules/ies_enkf_data.h | 1 + lib/analysis/modules/tests/ies_iteration.cpp | 45 ++++++- 4 files changed, 137 insertions(+), 94 deletions(-) diff --git a/lib/analysis/modules/ies_enkf.c b/lib/analysis/modules/ies_enkf.c index c17f657539..1885fd54a9 100644 --- a/lib/analysis/modules/ies_enkf.c +++ b/lib/analysis/modules/ies_enkf.c @@ -55,13 +55,7 @@ extern "C" { /* ies_enkf function headers */ /***************************************************************************************************************/ void ies_enkf_linalg_extract_active(const ies_enkf_data_type * data, - const matrix_type * D0, - const matrix_type * Yin, - const matrix_type * Rin, matrix_type * E, - matrix_type * D, - matrix_type * Y, - matrix_type * R, FILE * log_fp, bool dbg); @@ -199,9 +193,9 @@ void ies_enkf_updateA( void * module_data, ies_enkf_data_type * data = ies_enkf_data_safe_cast( module_data ); const ies_enkf_config_type * ies_config = ies_enkf_data_get_config( data ); + int nrobs_msk =ies_enkf_data_get_obs_mask_size(data); // Total number of observations int nrobs_inp =matrix_get_rows( Yin ); // Number of active observations input in current iteration - int nrobs =nrobs_inp; // Number of selected active observations int ens_size_msk = ies_enkf_data_get_ens_mask_size(data); // Total number of realizations @@ -238,28 +232,31 @@ void ies_enkf_updateA( void * module_data, bool dbg = ies_enkf_config_get_ies_debug( ies_config ) ; /***************************************************************************************************************/ -/* Counting number of active observations for current iteration. The number requires that - the observations were included in the initial call for storage in data->E as well as in - in the current call. Thus, it is possible to remove observations but not include new ones. */ - nrobs = ies_enkf_data_active_obs_count(data); +/* Counting number of active observations for current iteration. + If the observations have been used in previous iterations they are contained in data->E0. + If they are introduced in the current iteration they will be augmented to data->E. */ + ies_enkf_data_store_initialE(data, Ein); + ies_enkf_data_augment_initialE(data, Ein); + double nsc = 1.0/sqrt(ens_size - 1.0); /* dimensions for printing */ - int m_nrobs = util_int_min(nrobs -1,7); + int m_nrobs = util_int_min(nrobs_inp -1,7); int m_ens_size = util_int_min(ens_size -1,16); int m_state_size = util_int_min(state_size-1,3); /***************************************************************************************************************/ - ies_enkf_data_store_initialE(data, Ein); ies_enkf_data_allocateW(data, ens_size_msk); ies_enkf_data_store_initialA(data, A); /***************************************************************************************************************/ fprintf(log_fp,"----active ens_size = %d, total ens_size_msk = %d\n", ens_size,ens_size_msk); - fprintf(log_fp,"----active nrobs = %d, nrobs_inp= %d, total nrobs_msk= %d\n", nrobs, nrobs_inp, nrobs_msk ); + fprintf(log_fp,"----active nrobs_inp = %d, total nrobs_msk= %d\n", nrobs_inp, nrobs_msk ); fprintf(log_fp,"----active state_size= %d\n", state_size ); + + /***************************************************************************************************************/ /* Print initial observation mask */ printf_mask(log_fp, "obsmask_0:", ies_enkf_data_get_obs_mask0(data)); @@ -278,17 +275,16 @@ void ies_enkf_updateA( void * module_data, * Copies the initial measurement perturbations for the active observations into the current E matrix. * Copies the inputs in D, Y and R into their local representations */ - matrix_type * Y = matrix_alloc( nrobs , ens_size ); - matrix_type * E = matrix_alloc( nrobs , ens_size ); - matrix_type * D = matrix_alloc( nrobs , ens_size ); - matrix_type * R = matrix_alloc( nrobs , nrobs ); - matrix_type * D0 = matrix_alloc_copy( Din ); + matrix_type * Y = matrix_alloc_copy( Yin ); + matrix_type * E = matrix_alloc( nrobs_inp, ens_size ); + matrix_type * D = matrix_alloc_copy( Din ); + matrix_type * R = matrix_alloc_copy( Rin ); /* Subtract new measurement perturbations D=D-E */ - matrix_inplace_sub(D0,Ein); + matrix_inplace_sub(D,Ein); /* Extract active observations and realizations for D, E, Y, and R */ - ies_enkf_linalg_extract_active(data, D0, Yin, Rin, E, D, Y, R, log_fp, dbg); + ies_enkf_linalg_extract_active(data, E, log_fp, dbg); /* Add old measurement perturbations */ matrix_inplace_add(D,E); @@ -296,8 +292,8 @@ void ies_enkf_updateA( void * module_data, matrix_type * A0 = matrix_alloc( state_size, ens_size ); // Temporary ensemble matrix matrix_type * W0 = matrix_alloc( ens_size , ens_size ); // Coefficient matrix matrix_type * W = matrix_alloc( ens_size , ens_size ); // Coefficient matrix - matrix_type * H = matrix_alloc( nrobs , ens_size ); // Innovation vector "H= S*W+D-Y" - matrix_type * S = matrix_alloc( nrobs , ens_size ); // Predicted ensemble anomalies scaled with inv(Omeaga) + matrix_type * H = matrix_alloc( nrobs_inp, ens_size ); // Innovation vector "H= S*W+D-Y" + matrix_type * S = matrix_alloc( nrobs_inp, ens_size ); // Predicted ensemble anomalies scaled with inv(Omeaga) matrix_type * X = matrix_alloc( ens_size, ens_size ); // Final transform matrix if (dbg) matrix_pretty_fprint_submat(A,"Ain","%11.5f",log_fp,0,m_state_size,0,m_ens_size) ; @@ -401,7 +397,7 @@ void ies_enkf_updateA( void * module_data, * COMPUTE ||W0 - W|| AND EVALUATE COST FUNCTION FOR PREVIOUS ITERATE (Line 12) */ matrix_type * DW = matrix_alloc( ens_size , ens_size ); matrix_sub(DW,W0,W); - teclog(W,D,DW,"iesteclog.dat",ens_size,iteration_nr, rcond, nrsing, nrobs); + teclog(W,D,DW,"iesteclog.dat",ens_size,iteration_nr, rcond, nrsing, nrobs_inp); teccost(W,D,"costf.dat",ens_size,iteration_nr); /* DONE *********************************************************************************************************/ @@ -412,7 +408,6 @@ void ies_enkf_updateA( void * module_data, matrix_free( D ); matrix_free( E ); matrix_free( R ); - matrix_free( D0 ); matrix_free( A0 ); matrix_free( W0 ); matrix_free( W ); @@ -429,85 +424,45 @@ void ies_enkf_updateA( void * module_data, /* Extract active observations and realizations for D, E, Y, and R. * IES works from an initial set of active realizations and measurements. * In the first iteration we store the measurement perturbations from the initially active observations. -* In the subsequent iterations we neglect new observations that may be introduced by ERT, and we reuse the -* intially stored measurement perturbations. +* In the subsequent iterations we include the new observations that may be introduced by ERT including their new +* measurement perturbations, and we reuse the intially stored measurement perturbations. * Additionally we may loose realizations during the iteratitions, and we extract measurement perturbations for -* only the active realizations and observations. +* only the active realizations. */ void ies_enkf_linalg_extract_active(const ies_enkf_data_type * data, - const matrix_type * D0, - const matrix_type * Yin, - const matrix_type * Rin, matrix_type * E, - matrix_type * D, - matrix_type * Y, - matrix_type * R, FILE * log_fp, bool dbg){ - const bool_vector_type * obs_mask0 = ies_enkf_data_get_obs_mask0(data); const bool_vector_type * obs_mask = ies_enkf_data_get_obs_mask(data); const bool_vector_type * ens_mask = ies_enkf_data_get_ens_mask(data); - const matrix_type * dataE = ies_enkf_data_getE(data); - int nrobs_msk =ies_enkf_data_get_obs_mask_size(data); // Total number of observations - int nrobs_inp =matrix_get_rows( Yin ); // Number of active observations input in current iteration - int nrobs=nrobs_inp; + int obs_size_msk = ies_enkf_data_get_obs_mask_size(data); // Total number of observations int ens_size_msk = ies_enkf_data_get_ens_mask_size(data); // Total number of realizations - int ens_size = matrix_get_columns( Yin ); // Number of active realizations in current iteration - int m_nrobs = util_int_min(nrobs -1,7); - int m_ens_size = util_int_min(ens_size -1,16); - - matrix_type * Rtmp= matrix_alloc( nrobs , nrobs_inp ); + const matrix_type * dataE = ies_enkf_data_getE(data); - int j=-1; // counter for initial mask0 - int k=-1; // counter for current mask int m=-1; // counter for currently active measurements - for (int iobs = 0; iobs < nrobs_msk; iobs++){ - if ( bool_vector_iget(obs_mask0,iobs) ) - j=j+1 ; - - if ( bool_vector_iget(obs_mask,iobs) ) - k=k+1 ; - - if ( bool_vector_iget(obs_mask0,iobs) && bool_vector_iget(obs_mask,iobs) ){ - m=m+1; - - { - int i=0; - for (int iens = 0; iens < ens_size_msk; iens++){ - if ( bool_vector_iget(ens_mask,iens) ){ - matrix_iset_safe(E,m,i,matrix_iget(dataE,j,iens)) ; - i=i+1; - } + for (int iobs = 0; iobs < obs_size_msk; iobs++){ + if ( bool_vector_iget(obs_mask,iobs) ) { + m++; + fprintf(log_fp,"ies_enkf_linalg_extract_active iobs=%d m=%d)\n",iobs,m); + int i=-1; + for (int iens = 0; iens < ens_size_msk; iens++){ + if ( bool_vector_iget(ens_mask,iens) ){ + i++; + matrix_iset_safe(E,m,i,matrix_iget(dataE,iobs,iens)) ; } } - - matrix_copy_row(D,D0,m,k); - matrix_copy_row(Y,Yin,m,k); - matrix_copy_row(Rtmp,Rin,m,k); - matrix_copy_column(R,Rtmp,m,k); } } - matrix_free( Rtmp); - - if (ens_size_msk == ens_size && nrobs == nrobs_inp){ - fprintf(log_fp,"data->E copied exactly to E: %d\n",matrix_equal(dataE,E)) ; + if (dbg) { + int m_nrobs = util_int_min(matrix_get_rows( E ) -1,7); + int m_ens_size = util_int_min(matrix_get_columns( E )-1,16); + matrix_pretty_fprint_submat(E,"E","%11.5f",log_fp,0,m_nrobs,0,m_ens_size) ; } - fprintf(log_fp,"Input matrices\n"); - if (dbg) matrix_pretty_fprint_submat(E,"E","%11.5f",log_fp,0,m_nrobs,0,m_ens_size) ; - - if (dbg) matrix_pretty_fprint_submat(D0,"Din","%11.5f",log_fp,0,m_nrobs,0,m_ens_size) ; - if (dbg) matrix_pretty_fprint_submat(D,"D","%11.5f",log_fp,0,m_nrobs,0,m_ens_size) ; - - if (dbg) matrix_pretty_fprint_submat(Yin,"Yin","%11.5f",log_fp,0,m_nrobs,0,m_ens_size) ; - if (dbg) matrix_pretty_fprint_submat(Y,"Y","%11.5f",log_fp,0,m_nrobs,0,m_ens_size) ; - - if (dbg) matrix_pretty_fprint_submat(Rin,"Rin","%11.5f",log_fp,0,m_nrobs,0,m_nrobs) ; - if (dbg) matrix_pretty_fprint_submat(R,"R","%11.5f",log_fp,0,m_nrobs,0,m_nrobs) ; } diff --git a/lib/analysis/modules/ies_enkf_data.c b/lib/analysis/modules/ies_enkf_data.c index a7d28275dc..7bda53c66c 100644 --- a/lib/analysis/modules/ies_enkf_data.c +++ b/lib/analysis/modules/ies_enkf_data.c @@ -131,7 +131,7 @@ int ies_enkf_data_active_obs_count(const ies_enkf_data_type * data) { int nrobs_msk = ies_enkf_data_get_obs_mask_size( data ); int nrobs = 0; for (int i = 0; i < nrobs_msk; i++) { - if ( bool_vector_iget(data->obs_mask0,i) && bool_vector_iget(data->obs_mask,i) ){ + if ( bool_vector_iget(data->obs_mask,i) ){ nrobs=nrobs+1; } } @@ -167,16 +167,66 @@ void ies_enkf_data_fclose_log(ies_enkf_data_type * data) { } +/* We store the initial observation perturbations in E, corresponding to active data->obs_mask0 + in data->E. The unused rows in data->E corresponds to false data->obs_mask0 */ void ies_enkf_data_store_initialE(ies_enkf_data_type * data, const matrix_type * E0) { if (!data->E){ - // We store the initial observation perturbations corresponding to data->obs_mask0. bool dbg = ies_enkf_config_get_ies_debug( data->config ) ; - int m_nrobs = util_int_min(matrix_get_rows( E0 )-1, 50); - int m_ens_size = util_int_min(matrix_get_columns( E0 )-1, 16); - fprintf(data->log_fp,"Allocating and assigning data->E \n"); - data->E = matrix_alloc_copy(E0); - if (dbg) + int obs_size_msk = ies_enkf_data_get_obs_mask_size( data ); + int ens_size_msk = ies_enkf_data_get_ens_mask_size( data ); + fprintf(data->log_fp,"Allocating and assigning data->E (%d,%d) \n",obs_size_msk,ens_size_msk); + data->E = matrix_alloc(obs_size_msk,ens_size_msk); + matrix_set(data->E , -999.9) ; + int m=0; + for (int i = 0; i < obs_size_msk; i++) { + if ( bool_vector_iget(data->obs_mask0,i) ){ + matrix_copy_row(data->E,E0,i,m); + m++; + } + } + + if (dbg) { + int nrobs_inp=matrix_get_rows( E0 ); + int m_nrobs=util_int_min(nrobs_inp-1, 50); + int m_ens_size=util_int_min(ens_size_msk-1, 16); + matrix_pretty_fprint_submat(E0,"Ein","%11.5f",data->log_fp,0,m_nrobs,0,m_ens_size); + m_nrobs=util_int_min(obs_size_msk-1, 50); matrix_pretty_fprint_submat(data->E,"data->E","%11.5f",data->log_fp,0,m_nrobs,0,m_ens_size); + } + + } +} + +/* We augment the additional observation perturbations arriving in later iterations, that was not stored before, + in data->E. */ +void ies_enkf_data_augment_initialE(ies_enkf_data_type * data, const matrix_type * E0) { + if (data->E){ + fprintf(data->log_fp,"Augmenting new perturbations to data->E \n"); + bool dbg = ies_enkf_config_get_ies_debug( data->config ) ; + int obs_size_msk = ies_enkf_data_get_obs_mask_size( data ); + int ens_size_msk = ies_enkf_data_get_ens_mask_size( data ); + int m=0; + for (int iobs = 0; iobs < obs_size_msk; iobs++){ + if ( !bool_vector_iget(data->obs_mask0,iobs) && bool_vector_iget(data->obs_mask,iobs) ){ + int i=-1; + for (int iens = 0; iens < ens_size_msk; iens++){ + if ( bool_vector_iget(data->ens_mask,iens) ){ + i++; + matrix_iset_safe(data->E,iobs,iens,matrix_iget(E0,m,i)) ; + } + } + bool_vector_iset(data->obs_mask0,iobs,true); + } + if ( bool_vector_iget(data->obs_mask,iobs) ){ + m++; + } + } + + if (dbg) { + int m_nrobs=util_int_min(obs_size_msk-1, 50); + int m_ens_size=util_int_min(ens_size_msk-1, 16); + matrix_pretty_fprint_submat(data->E,"data->E","%11.5f",data->log_fp,0,m_nrobs,0,m_ens_size); + } } } diff --git a/lib/analysis/modules/ies_enkf_data.h b/lib/analysis/modules/ies_enkf_data.h index 51df5bd50a..fac317efe7 100644 --- a/lib/analysis/modules/ies_enkf_data.h +++ b/lib/analysis/modules/ies_enkf_data.h @@ -41,6 +41,7 @@ void ies_enkf_data_fclose_log(ies_enkf_data_type * data); void ies_enkf_data_allocateW(ies_enkf_data_type * data, int ens_size); void ies_enkf_data_store_initialE(ies_enkf_data_type * data, const matrix_type * E0); +void ies_enkf_data_augment_initialE(ies_enkf_data_type * data, const matrix_type * E0); void ies_enkf_data_store_initialA(ies_enkf_data_type * data, const matrix_type * A); const matrix_type * ies_enkf_data_getE(const ies_enkf_data_type * data); const matrix_type * ies_enkf_data_getA0(const ies_enkf_data_type * data); diff --git a/lib/analysis/modules/tests/ies_iteration.cpp b/lib/analysis/modules/tests/ies_iteration.cpp index 796b82b753..d4d51a5cf3 100644 --- a/lib/analysis/modules/tests/ies_iteration.cpp +++ b/lib/analysis/modules/tests/ies_iteration.cpp @@ -261,10 +261,16 @@ matrix_type * swap_matrix(matrix_type * old_matrix, matrix_type * new_matrix) { /* This test verifies that the update iteration do not crash hard when realizations and observations are deactived between iterations. + The function is testing reactivation as well. It is a bit tricky since there is no + reactivation function. What is done is to start with identical copies, testdata and + testdata2. In the first iteration, one observation is removed in testdata2 and before + computing the update. In the subsequent iterations, testdata is used which includes + the datapoint initially removed from testdata2. */ -void test_deactivate(const char * testdata_file) { +void test_deactivate_observations_and_realizations(const char * testdata_file) { res::es_testdata testdata(testdata_file); + res::es_testdata testdata2(testdata_file); int num_iter = 10; rng_type * rng = rng_alloc( MZRAN, INIT_DEFAULT ); @@ -274,14 +280,44 @@ void test_deactivate(const char * testdata_file) { matrix_type * A0 = testdata.alloc_state("prior"); matrix_type * A = matrix_alloc_copy(A0); + ies_enkf_config_set_truncation(ies_config, 1.00); ies_enkf_config_set_ies_max_steplength(ies_config, 0.50); ies_enkf_config_set_ies_min_steplength(ies_config, 0.50); ies_enkf_config_set_ies_inversion(ies_config, IES_INVERSION_SUBSPACE_EXACT_R); ies_enkf_config_set_ies_aaprojection(ies_config, false); + for (int iter=0; iter < 1; iter++) { + printf("test_deactivate_observations_and_realizations: iter= %d\n",iter); - for (int iter=0; iter < num_iter; iter++) { + // deactivate an observation initially to test reactivation in the following iteration + testdata2.deactivate_obs( 2 ); + + ies_enkf_init_update(ies_data, + testdata2.ens_mask, + testdata2.obs_mask, + testdata2.S, + testdata2.R, + testdata2.dObs, + testdata2.E, + testdata2.D, + rng); + + ies_enkf_updateA(ies_data, + A, + testdata2.S, + testdata2.R, + testdata2.dObs, + testdata2.E, + testdata2.D, + NULL, + rng); + } + + for (int iter=1; iter < num_iter; iter++) { + printf("test_deactivate_observations_and_realizations: iter= %d\n",iter); + + // Deactivate a realization if (iter == 3) { int iens = testdata.active_ens_size / 2; testdata.deactivate_realization( iens ); @@ -295,6 +331,7 @@ void test_deactivate(const char * testdata_file) { } } + // Now deactivate a previously active observation if (iter == 7) testdata.deactivate_obs( testdata.active_obs_size / 2 ); @@ -317,9 +354,9 @@ void test_deactivate(const char * testdata_file) { testdata.D, NULL, rng); - } + matrix_free(A); matrix_free(A0); @@ -332,5 +369,5 @@ int main(int argc, char ** argv) { res::es_testdata testdata(argv[1]); cmp_std_ies(testdata); cmp_std_ies_delrel(testdata); - test_deactivate(argv[1]); + test_deactivate_observations_and_realizations(argv[1]); }