diff --git a/tests/data/snake_oil_data.py b/tests/data/snake_oil_data.py index 1dab4ca3..8d715113 100644 --- a/tests/data/snake_oil_data.py +++ b/tests/data/snake_oil_data.py @@ -267,3 +267,61 @@ def to_parquet_helper(dataframe: pd.DataFrame) -> bytes: index=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"], ).transpose() ) + +ensembles_response.update({ + "http://127.0.0.1:5000/ensembles/42": { + "data": { + "ensemble": { + "children": [], + "experiment": {"id": "exp1_id"}, + "parent": None, + "id": 1, + "timeCreated": "2020-04-29T09:36:26", + "size": 1, + "activeRealizations": [0], + "userdata": '{"name": "default"}', + } + } + }, + "http://127.0.0.1:5000/ensembles/42/parameters": [ + "test_parameter_1", + "test_parameter_2", + ], + "http://127.0.0.1:5000/ensembles/42/responses": { + "test_resposne": { + "name": "name_test_response", + "id": "test_response_id_1", + }, + }, + "http://127.0.0.1:5000/ensembles/42/records/test_parameter_1/labels": [], + "http://127.0.0.1:5000/ensembles/42/records/test_parameter_2/labels": ["a", "b"], + "http://127.0.0.1:5000/ensembles/42/records/test_parameter_2/labels": ["a", "b"], +}) + +ensembles_response['' + "http://127.0.0.1:5000/ensembles/42/records/test_parameter_1?" +] = to_parquet_helper( + pd.DataFrame( + [0.1, 1.1, 2.1], + columns=["0"], + index=["0", "1", "2"], + ).transpose() +) +ensembles_response[ + "http://127.0.0.1:5000/ensembles/42/records/test_parameter_2?label=a" +] = to_parquet_helper( + pd.DataFrame( + [0.01, 1.01, 2.01], + columns=["a"], + index=["0", "1", "2"], + ).transpose() +) +ensembles_response[ + "http://127.0.0.1:5000/ensembles/42/records/test_parameter_2?label=b" +] = to_parquet_helper( + pd.DataFrame( + [0.02, 1.02, 2.02], + columns=["b"], + index=["0", "1", "2"], + ).transpose() +) diff --git a/tests/models/test_ensemble_model.py b/tests/models/test_ensemble_model.py index 803a3d4e..caae1327 100644 --- a/tests/models/test_ensemble_model.py +++ b/tests/models/test_ensemble_model.py @@ -7,3 +7,36 @@ def test_ensemble_model(mock_data): assert ens_model.children[0]._name == "default_smoother_update" assert ens_model._name == "default" assert len(ens_model.responses) == 1 + +def test_ensemble_model_labled_parameters(mock_data): + ens_id = 42 + ens_model = EnsembleModel(ensemble_id=ens_id, project_id=None) + assert ens_model._name == "default" + assert len(ens_model.parameters) == 3 + for param_name, parameter in ens_model.parameters.items(): + name, label = param_name.split("::", maxsplit=1) if "::" in param_name else [param_name, None] + expected_lables = ens_model._data_loader.get_record_labels(ens_id, name) + if label is not None: + assert label in expected_lables + +def test_ensemble_model_parameter_data(mock_data): + ens_id = 42 + ens_model = EnsembleModel(ensemble_id=ens_id, project_id=None) + parameters = ens_model.parameters + assert len(parameters) == 3 + + # Parameter no lables: + expected_lables = ens_model._data_loader.get_record_labels(ens_id, "test_parameter_1") + assert expected_lables == [] + data = parameters["test_parameter_1"].data_df().values + assert data.flatten().tolist() == [0.1, 1.1, 2.1] + + # Parameter with lables: + expected_lables = ens_model._data_loader.get_record_labels(ens_id, "test_parameter_2") + assert expected_lables == ["a", "b"] + data = parameters["test_parameter_2::a"].data_df()["a"].values.tolist() + assert data == [0.01, 1.01, 2.01] + data = parameters["test_parameter_2::b"].data_df()["b"].values.tolist() + assert data == [0.02, 1.02, 2.02] + +