-
-
Notifications
You must be signed in to change notification settings - Fork 143
/
Copy pathscript.py
1086 lines (953 loc) · 46.5 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import html
import json
import random
import subprocess
import time
import os
import requests
import threading
import signal
import sys
import atexit
import shutil
from pathlib import Path
from datetime import datetime, timedelta
import re
import numpy as np
import soundfile as sf
import uuid
import logging
# Store the current disable level
current_disable_level = logging.getLogger().manager.disable
######################################
#### ALLTALK ALLOWED STARTUP TIME ####
######################################
startup_wait_time = 120
# You can change the above setting to a larger number to allow AllTAlk more time to start up. The default setting is 120 seconds (2 minutes).
# On some older systems you may need to allow AllTalk more time. So you could set it to 240 (4 minutes) which will give AllTalk more to load.
#################################################################
#### LOAD PARAMS FROM confignew.json - REQUIRED FOR BRANDING ####
#################################################################
# STARTUP VARIABLE - Create "this_dir" variable as the current script directory
this_dir = Path(__file__).parent.resolve()
# load config file in and get settings
def load_config(file_path):
with open(file_path, "r") as config_file:
config = json.load(config_file)
return config
config_file_path = this_dir / "confignew.json"
# Load the params dictionary from the confignew.json file
params = load_config(config_file_path)
print(f"[{params['branding']}Startup]\033[94m _ _ _ \033[1;35m_____ _ _ \033[0m _____ _____ ____ ")
print(f"[{params['branding']}Startup]\033[94m / \ | | |\033[1;35m_ _|_ _| | | __ \033[0m |_ _|_ _/ ___| ")
print(f"[{params['branding']}Startup]\033[94m / _ \ | | |\033[1;35m | |/ _` | | |/ / \033[0m | | | | \___ \ ")
print(f"[{params['branding']}Startup]\033[94m / ___ \| | |\033[1;35m | | (_| | | < \033[0m | | | | ___) |")
print(f"[{params['branding']}Startup]\033[94m /_/ \_\_|_|\033[1;35m |_|\__,_|_|_|\_\ \033[0m |_| |_| |____/ ")
print(f"[{params['branding']}Startup]")
##############################################
#### Update any changes to confignew.json ####
##############################################
update_config_path = this_dir / "system" / "config" / "at_configupdate.json"
downgrade_config_path = this_dir / "system" / "config" / "at_configdowngrade.json"
def changes_needed(main_config, update_config, downgrade_config):
"""Check if there are any changes to be made to the main configuration."""
for key in downgrade_config.keys():
if key in main_config:
return True
for key, value in update_config.items():
if key not in main_config:
return True
return False
def update_config(config_file_path, update_config_path, downgrade_config_path):
try:
with open(config_file_path, 'r') as file:
main_config = json.load(file)
with open(update_config_path, 'r') as file:
update_config = json.load(file)
with open(downgrade_config_path, 'r') as file:
downgrade_config = json.load(file)
# Determine if changes are needed
if changes_needed(main_config, update_config, downgrade_config):
# Backup with timestamp to avoid overwriting
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
backup_path = config_file_path.with_suffix(f".{timestamp}.bak")
logging.info(f"Creating backup of the main config to {backup_path}")
shutil.copy(config_file_path, backup_path)
# Proceed with updates and downgrades
for key, value in update_config.items():
if key not in main_config:
main_config[key] = value
for key in downgrade_config.keys():
if key in main_config:
del main_config[key]
# Save the updated configuration
with open(config_file_path, 'w') as file:
json.dump(main_config, file, indent=4)
print(f"[{params['branding']}Startup] \033[92mConfig file check : \033[91mUpdates applied\033[0m")
else:
print(f"[{params['branding']}Startup] \033[92mConfig file check : \033[93mNo Updates required\033[0m")
except Exception as e:
print(f"[{params['branding']}Startup] \033[92mConfig file check : \033[91mError updating\033[0m")
# Update the configuration
update_config(config_file_path, update_config_path, downgrade_config_path)
# Re-Load the params dictionary from the confignew.json file
params = load_config(config_file_path)
#########################################
#### Continue on with Startup Checks ####
#########################################
# Required for sentence splitting
try:
from TTS.api import TTS
from TTS.utils.synthesizer import Synthesizer
except ModuleNotFoundError:
# Inform the user about the missing module and suggest next steps
print(f"[{params['branding']}]\033[91mWarning\033[0m Could not find the TTS module. Make sure to install the requirements for the {params['branding']} extension.")
print(f"[{params['branding']}]\033[91mWarning\033[0m Please use the ATSetup utility or check the Github installation instructions.")
# Re-raise the ModuleNotFoundError to stop the program and print the traceback
raise
# Suppress logging
logging.disable(logging.ERROR)
try:
import deepspeed
deepspeed_installed = True
except ImportError:
deepspeed_installed = False
# Restore previous logging level
logging.disable(current_disable_level)
# Import gradio if being used within text generation webUI
try:
import gradio as gr
from modules import chat, shared, ui_chat
from modules.logging_colors import logger
from modules.ui import create_refresh_button
from modules.utils import gradio
# This is set to check if the script is being run within text generation webui or as a standalone script. False is running as part of text gen web ui or a gradio interface
running_in_standalone = False
output_folder_wav = params["output_folder_wav"]
print(f"[{params['branding']}Startup] \033[92m{params['branding']}startup Mode : \033[93mText-Gen-webui mode\033[0m")
except ModuleNotFoundError:
output_folder_wav = params["output_folder_wav_standalone"]
print(f"[{params['branding']}Startup] \033[92m{params['branding']}startup Mode : \033[93mStandalone mode\033[0m")
# This is set to check if the script is being run within text generation webui or as a standalone script. true means standalone
running_in_standalone = True
###########################
#### STARTUP VARIABLES ####
###########################
# STARTUP VARIABLE - Import languges file for Gradio to be able to display them in the interface
with open(this_dir / "system" / "config" / "languages.json", encoding="utf8") as f:
languages = json.load(f)
# Create a global lock
process_lock = threading.Lock()
# Base setting for a possible FineTuned model existing and the loader being available
tts_method_xtts_ft = False
# Gather the voice files
def get_available_voices():
return sorted([voice.name for voice in Path(f"{this_dir}/voices").glob("*.wav")])
############################################
#### DELETE OLD OUTPUT WAV FILES IF SET ####
############################################
def delete_old_files(folder_path, days_to_keep):
current_time = datetime.now()
print(f"[{params['branding']}Startup] \033[92mWAV file deletion :\033[93m", delete_output_wavs_setting,"\033[0m")
for file_name in os.listdir(folder_path):
file_path = os.path.join(folder_path, file_name)
if os.path.isfile(file_path):
file_creation_time = datetime.fromtimestamp(os.path.getctime(file_path))
age = current_time - file_creation_time
if age > timedelta(days=days_to_keep):
os.remove(file_path)
# Extract settings using params dictionary
delete_output_wavs_setting = params["delete_output_wavs"]
output_folder_wav = os.path.normpath(output_folder_wav)
# Check and perform file deletion
if delete_output_wavs_setting.lower() == "disabled":
print("["+ params["branding"]+"Startup] \033[92mWAV file deletion :\033[93m Disabled\033[0m")
else:
try:
days_to_keep = int(delete_output_wavs_setting.split()[0])
delete_old_files(output_folder_wav, days_to_keep)
except ValueError:
print(f"[{params['branding']}Startup] \033[92mWAV file deletion :\033[93m Invalid setting for deleting old wav files. Please use 'Disabled' or 'X Days' format\033[0m")
if deepspeed_installed:
print(f"[{params['branding']}Startup] \033[92mDeepSpeed version :\033[93m",deepspeed.__version__,"\033[0m")
else:
print(f"[{params['branding']}Startup] \033[92mDeepSpeed version :\033[91m Not Detected\033[0m")
########################
#### STARTUP CHECKS ####
########################
# STARTUP Checks routine
def check_required_files():
this_dir = Path(__file__).parent.resolve()
download_script_path = this_dir / "modeldownload.py"
subprocess.run(["python", str(download_script_path)])
# STARTUP Call Check routine
check_required_files()
##################################################
#### Check to see if a finetuned model exists ####
##################################################
# Set the path to the directory
trained_model_directory = this_dir / "models" / "trainedmodel"
# Check if the directory "trainedmodel" exists
finetuned_model = trained_model_directory.exists()
# If the directory exists, check for the existence of the required files
# If true, this will add a extra option in the Gradio interface for loading Xttsv2 FT
if finetuned_model:
required_files = ["model.pth", "config.json", "vocab.json"]
finetuned_model = all(
(trained_model_directory / file).exists() for file in required_files
)
if finetuned_model:
print(f"[{params['branding']}Startup] \033[92mFinetuned model :\033[93m Detected\033[0m")
####################################################
#### SET GRADIO BUTTONS BASED ON confignew.json ####
####################################################
if params["tts_method_api_tts"] == True:
gr_modelchoice = "API TTS"
elif params["tts_method_api_local"] == True:
gr_modelchoice = "API Local"
elif params["tts_method_xtts_local"] == True:
gr_modelchoice = "XTTSv2 Local"
# Set the default for Narrated text without asterisk or quotes to be Narrator
non_quoted_text_is = True
######################
#### GRADIO STUFF ####
######################
def remove_tts_from_history(history):
for i, entry in enumerate(history["internal"]):
history["visible"][i] = [history["visible"][i][0], entry[1]]
return history
def toggle_text_in_history(history):
for i, entry in enumerate(history["visible"]):
visible_reply = entry[1]
if visible_reply.startswith("<audio"):
if params["show_text"]:
reply = history["internal"][i][1]
history["visible"][i] = [
history["visible"][i][0],
f"{visible_reply.split('</audio>')[0]}</audio>\n\n{reply}",
]
else:
history["visible"][i] = [
history["visible"][i][0],
f"{visible_reply.split('</audio>')[0]}</audio>",
]
return history
def history_modifier(history):
# Remove autoplay from the last reply
if len(history["internal"]) > 0:
history["visible"][-1] = [
history["visible"][-1][0],
history["visible"][-1][1].replace("controls autoplay>", "controls>"),
]
return history
######################################
#### SUBPROCESS/WEBSERVER STARTUP ####
######################################
base_url = f"http://{params['ip_address']}:{params['port_number']}"
script_path = this_dir / "tts_server.py"
def signal_handler(sig, frame):
print(f"[{params['branding']}Shutdown] \033[94mReceived Ctrl+C, terminating subprocess\033[92m")
if process.poll() is None:
process.terminate()
process.wait() # Wait for the subprocess to finish
sys.exit(0)
# Attach the signal handler to the SIGINT signal (Ctrl+C)
signal.signal(signal.SIGINT, signal_handler)
# Check if we're running in docker
if os.path.isfile("/.dockerenv"):
print(
f"[{params['branding']}Startup] \033[94mRunning in Docker. Please wait.\033[0m"
)
else:
# Start the subprocess
process = subprocess.Popen(["python", script_path])
# Check if the subprocess has started successfully
if process.poll() is None:
print(f"[{params['branding']}Startup] \033[92mTTS Subprocess :\033[93m Starting up\033[0m")
print(f"[{params['branding']}Startup]")
print(
f"[{params['branding']}Startup] \033[94m{params['branding']}Settings & Documentation:\033[00m",
f"\033[92mhttp://{params['ip_address']}:{params['port_number']}\033[00m",
)
print(f"[{params['branding']}Startup]")
else:
print(f"[{params['branding']}Startup] \033[91mWarning\033[0m TTS Subprocess Webserver failing to start process")
print(f"[{params['branding']}Startup] \033[91mWarning\033[0m It could be that you have something on port:",params["port_number"],)
print(f"[{params['branding']}Startup] \033[91mWarning\033[0m Or you have not started in a Python environement with all the necesssary bits installed")
print(f"[{params['branding']}Startup] \033[91mWarning\033[0m Check you are starting Text-generation-webui with either the start_xxxxx file or the Python environment with cmd_xxxxx file.")
print(f"[{params['branding']}Startup] \033[91mWarning\033[0m xxxxx is the type of OS you are on e.g. windows, linux or mac.")
print(f"[{params['branding']}Startup] \033[91mWarning\033[0m Alternatively, you could check no other Python processes are running that shouldnt be e.g. Restart your computer is the simple way.")
# Cleanly kill off this script, but allow text-generation-webui to keep running, albeit without this alltalk_tts
sys.exit(1)
timeout = startup_wait_time # Gather timeout setting from startup_wait_time
# Introduce a delay before starting the check loop
time.sleep(26) # Wait 26 secs before checking if the tts_server.py has started up.
start_time = time.time()
while time.time() - start_time < timeout:
try:
response = requests.get(f"{base_url}/ready")
if response.status_code == 200:
break
except requests.RequestException as e:
# Print the exception for debugging purposes
print(f"[{params['branding']}Startup] \033[91mWarning\033[0m TTS Subprocess has NOT started up yet, Will keep trying for {timeout} seconds maximum. Please wait.")
time.sleep(5)
else:
print(f"\n[{params['branding']}Startup] Startup timed out. Full help available here \033[92mhttps://github.com/erew123/alltalk_tts#-help-with-problems\033[0m")
print(f"[{params['branding']}Startup] On older system you may wish to open and edit \033[94mscript.py\033[0m with a text editor and changing the")
print(f"[{params['branding']}Startup] \033[94mstartup_wait_time = 120\033[0m setting to something like \033[94mstartup_wait_time = 240\033[0m as this will allow")
print(f"[{params['branding']}Startup] AllTalk more time to try load the model into your VRAM. Otherise please visit the Github for")
print(f"[{params['branding']}Startup] a list of other possible troubleshooting options.")
# Cleanly kill off this script, but allow text-generation-webui to keep running, albeit without this alltalk_tts
sys.exit(1)
#####################################
#### MODEL LOADING AND UNLOADING ####
#####################################
# MODEL - Swap model based on Gradio selection API TTS, API Local, XTTSv2 Local
def send_reload_request(tts_method):
global tts_method_xtts_ft
try:
params["tts_model_loaded"] = False
url = f"{base_url}/api/reload"
payload = {"tts_method": tts_method}
response = requests.post(url, params=payload)
response.raise_for_status() # Raises an HTTPError for bad responses
json_response = response.json()
# Check if the reload operation was successful
if json_response.get("status") == "model-success":
# Update tts_tts_model_loaded to True if the reload was successful
params["tts_model_loaded"] = True
# Update local script parameters based on the tts_method
if tts_method == "API TTS":
params["tts_method_api_local"] = False
params["tts_method_xtts_local"] = False
params["tts_method_api_tts"] = True
params["deepspeed_activate"] = False
audio_path = this_dir / "system" / "at_sounds" / "apitts.wav"
tts_method_xtts_ft = False
elif tts_method == "API Local":
params["tts_method_api_tts"] = False
params["tts_method_xtts_local"] = False
params["tts_method_api_local"] = True
params["deepspeed_activate"] = False
audio_path = this_dir / "system" / "at_sounds" / "apilocal.wav"
tts_method_xtts_ft = False
elif tts_method == "XTTSv2 Local":
params["tts_method_api_tts"] = False
params["tts_method_api_local"] = False
params["tts_method_xtts_local"] = True
audio_path = this_dir / "system" / "at_sounds" / "xttslocal.wav"
tts_method_xtts_ft = False
elif tts_method == "XTTSv2 FT":
params["tts_method_api_tts"] = False
params["tts_method_api_local"] = False
params["tts_method_xtts_local"] = False
audio_path = this_dir / "system" / "at_sounds" / "xttsfinetuned.wav"
tts_method_xtts_ft = True
return f'<audio src="file/{audio_path}" controls autoplay></audio>'
except requests.exceptions.RequestException as e:
# Handle the HTTP request error
print(f"[{params['branding']}Server] \033[91mWarning\033[0m Error during request to webserver process: {e}")
return {"status": "error", "message": str(e)}
##################
#### LOW VRAM ####
##################
# LOW VRAM - Gradio Checkbox handling
def send_lowvram_request(low_vram):
try:
params["tts_model_loaded"] = False
if low_vram:
audio_path = this_dir / "system" / "at_sounds" / "lowvramenabled.wav"
else:
audio_path = this_dir / "system" / "at_sounds" / "lowvramdisabled.wav"
url = f"{base_url}/api/lowvramsetting?new_low_vram_value={low_vram}"
headers = {"Content-Type": "application/json"}
response = requests.post(url, headers=headers)
response.raise_for_status() # Raises an HTTPError for bad responses
json_response = response.json()
# Check if the low VRAM request was successful
if json_response.get("status") == "lowvram-success":
# Update any relevant variables or perform other actions on success
params["tts_model_loaded"] = True
return f'<audio src="file/{audio_path}" controls autoplay></audio>'
except requests.exceptions.RequestException as e:
# Handle the HTTP request error
print(f"[{params['branding']}Server] \033[91mWarning\033[0m Error during request to webserver process: {e}")
return {"status": "error", "message": str(e)}
###################
#### DeepSpeed ####
###################
# DEEPSPEED - Reload the model when DeepSpeed checkbox is enabled/disabled
def send_deepspeed_request(deepspeed_param):
try:
params["tts_model_loaded"] = False
if deepspeed_param:
audio_path = this_dir / "system" / "at_sounds" / "deepspeedenabled.wav"
else:
audio_path = this_dir / "system" / "at_sounds" / "deepspeeddisabled.wav"
url = f"{base_url}/api/deepspeed?new_deepspeed_value={deepspeed_param}"
headers = {"Content-Type": "application/json"}
response = requests.post(url, headers=headers)
response.raise_for_status() # Raises an HTTPError for bad responses
json_response = response.json()
# Check if the deepspeed request was successful
if json_response.get("status") == "deepspeed-success":
# Update any relevant variables or perform other actions on success
params["tts_model_loaded"] = True
return f'<audio src="file/{audio_path}" controls autoplay></audio>'
except requests.exceptions.RequestException as e:
# Handle the HTTP request error
print(f"[{params['branding']}Server] \033[91mWarning\033[0m Error during request to webserver process: {e}")
return {"status": "error", "message": str(e)}
# DEEPSPEED - Display DeepSpeed Checkbox Yes or No
deepspeed_condition = params["tts_method_xtts_local"] == "True" and deepspeed_installed
#############################################################
#### TTS STRING CLEANING & PROCESSING PRE SENDING TO TTS ####
#############################################################
def new_split_into_sentences(self, text):
sentences = self.seg.segment(text)
if params["remove_trailing_dots"]:
sentences_without_dots = []
for sentence in sentences:
if sentence.endswith(".") and not sentence.endswith("..."):
sentence = sentence[:-1]
sentences_without_dots.append(sentence)
return sentences_without_dots
else:
return sentences
Synthesizer.split_into_sentences = new_split_into_sentences
# Check model is loaded and string isnt empty, before sending a TTS request.
def before_audio_generation(string, params):
# Check Model is loaded into cuda or cpu and error if not
if not params["tts_model_loaded"]:
print(f"[{params['branding']}Model] \033[91mWarning\033[0m Model is still loading, please wait before trying to generate TTS")
return
string = html.unescape(string) or random_sentence()
if string == "":
return "*Empty string*"
return string
##################
#### Narrator ####
##################
def combine(audio_files, output_folder, state):
audio = np.array([])
for audio_file in audio_files:
audio_data, sample_rate = sf.read(audio_file)
# Ensure all audio files have the same sample rate
if audio.size == 0:
audio = audio_data
else:
audio = np.concatenate((audio, audio_data))
# Save the combined audio to a file with a specified sample rate
if "character_menu" in state:
output_file_path = os.path.join(output_folder, f'{state["character_menu"]}_{int(time.time())}_combined.wav')
else:
output_file_path = os.path.join(output_folder, f"TTSOUT_{int(time.time())}_combined.wav")
sf.write(output_file_path, audio, samplerate=sample_rate)
# Clean up unnecessary files
for audio_file in audio_files:
os.remove(audio_file)
return output_file_path
################################
#### TTS PREVIEW GENERATION ####
################################
# PREVIEW VOICE - Generate Random Sentence if Voice Preview box is empty
def random_sentence():
with open(this_dir / "system" / "config" / "harvard_sentences.txt") as f:
return random.choice(list(f))
# PREVIEW VOICE- Generate TTS Function
def voice_preview(string):
if not params["activate"]:
return string
# Clean the string, capture model not loaded, and move model to cuda if needed
cleaned_string = before_audio_generation(string, params)
if cleaned_string is None:
return
string = cleaned_string
# Setup the output file
output_file = Path(params["output_folder_wav"]) / "voice_preview.wav"
# Generate the audio
language_code = languages.get(params["language"])
temperature = params["local_temperature"]
repetition_penalty = params["local_repetition_penalty"]
# Convert the WindowsPath object to a string before using it in JSON payload
output_file_str = output_file.as_posix()
# Lock before making the generate request
with process_lock:
generate_response = send_generate_request(
string,
params["voice"],
language_code,
temperature,
repetition_penalty,
output_file_str,
)
# Check if lock is already acquired
if process_lock.locked():
print(f"[{params['branding']}Model] \033[91mWarning\033[0m Audio generation is already in progress. Please wait.")
return
if generate_response.get("status") == "generate-success":
# Handle Gradio and playback
autoplay = "autoplay" if params["autoplay"] else ""
return f'<audio src="file/{output_file_str}?{int(time.time())}" controls {autoplay}></audio>'
else:
# Handle the case where audio generation was not successful
return f"[{params['branding']}Server] Audio generation failed. Status: {generate_response.get('status')}"
#######################
#### TEXT CLEANING ####
#######################
def process_text(text):
# Normalize HTML encoded quotes
text = html.unescape(text)
# Replace ellipsis with a single dot
text = re.sub(r"\.{3,}", ".", text)
# Pattern to identify combined narrator and character speech
combined_pattern = r'(\*[^*"]+\*|"[^"*]+")'
# List to hold parts of speech along with their type
ordered_parts = []
# Track the start of the next segment
start = 0
# Find all matches
for match in re.finditer(combined_pattern, text):
# Add the text before the match, if any, as ambiguous
if start < match.start():
ambiguous_text = text[start : match.start()].strip()
if ambiguous_text:
ordered_parts.append(("ambiguous", ambiguous_text))
# Add the matched part as either narrator or character
matched_text = match.group(0)
if matched_text.startswith("*") and matched_text.endswith("*"):
ordered_parts.append(("narrator", matched_text.strip("*").strip()))
elif matched_text.startswith('"') and matched_text.endswith('"'):
ordered_parts.append(("character", matched_text.strip('"').strip()))
else:
# In case of mixed or improperly formatted parts
if "*" in matched_text:
ordered_parts.append(("narrator", matched_text.strip("*").strip('"')))
else:
ordered_parts.append(("character", matched_text.strip('"').strip("*")))
# Update the start of the next segment
start = match.end()
# Add any remaining text after the last match as ambiguous
if start < len(text):
ambiguous_text = text[start:].strip()
if ambiguous_text:
ordered_parts.append(("ambiguous", ambiguous_text))
return ordered_parts
########################
#### IMAGE CLEANING ####
########################
img_pattern = r'<img[^>]*src\s*=\s*["\'][^"\'>]+["\'][^>]*>'
def extract_and_remove_images(text):
"""
Extracts all image data from the text and removes it for clean TTS processing.
Returns the cleaned text and the extracted image data.
"""
img_matches = re.findall(img_pattern, text)
img_info = "\n".join(img_matches) # Store extracted image data
cleaned_text = re.sub(img_pattern, '', text) # Remove images from text
return cleaned_text, img_info
def reinsert_images(text, img_info):
"""
Reinserts the previously extracted image data back into the text.
"""
if img_info: # Check if there are images to reinsert
text += f"\n\n{img_info}"
return text
#################################
#### TTS STANDARD GENERATION ####
#################################
# STANDARD VOICE - Generate TTS Function
def output_modifier(string, state):
if not params["activate"]:
return string
img_info = ""
cleaned_text, img_info = extract_and_remove_images(string)
# print("Cleaned STRING IS:", cleaned_text)
cleaned_string = before_audio_generation(cleaned_text, params)
if cleaned_string is None:
return
language_code = languages.get(params["language"])
temperature = params["local_temperature"]
repetition_penalty = params["local_repetition_penalty"]
# Create a list to store generated audio paths
audio_files = []
if process_lock.acquire(blocking=False):
try:
if params["narrator_enabled"]:
processed_parts = process_text(cleaned_string)
audio_files_all_paragraphs = []
for part_type, part in processed_parts:
# Skip parts that are too short
if len(part.strip()) <= 3:
continue
# Determine the voice to use based on the part type
if part_type == "narrator":
voice_to_use = params["narrator_voice"]
print(f"[{params['branding']}TTSGen] \033[92mNarrator\033[0m") # Green
elif part_type == "character":
voice_to_use = params["voice"]
print(f"[{params['branding']}TTSGen] \033[36mCharacter\033[0m") # Yellow
else:
# Handle ambiguous parts based on user preference
voice_to_use = (
params["voice"]
if non_quoted_text_is
else params["narrator_voice"]
)
voice_description = (
"\033[36mCharacter (Text-not-inside)\033[0m"
if non_quoted_text_is
else "\033[92mNarrator (Text-not-inside)\033[0m"
)
print(f"[{params['branding']}TTSGen] {voice_description}")
# Replace multiple exclamation marks, question marks, or other punctuation with a single instance
cleaned_part = re.sub(r"([!?.\u3002\uFF1F\uFF01\uFF0C])\1+", r"\1", part)
# Replace "Chinese ellipsis" with a single dot
cleaned_part = re.sub(r"\u2026{1,2}", ". ", cleaned_part)
# Further clean to remove any other unwanted characters
cleaned_part = re.sub(r'[^a-zA-Z0-9\s.,;:!?\-\'"$\u0400-\u04FF\u00C0-\u00FF\u0150\u0151\u0170\u0171\u0900-\u097F\u2018\u2019\u201C\u201D\u3001\u3002\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\uF900-\uFAFF\u0600-\u06FF\u0750-\u077F\uFB50-\uFDFF\uFE70-\uFEFF\uAC00-\uD7A3\u1100-\u11FF\u3130-\u318F\uFF01\uFF0c\uFF1A\uFF1B\uFF1F]', '', cleaned_part)
# Remove all newline characters (single or multiple)
cleaned_part = re.sub(r"\n+", " ", cleaned_part)
# Generate TTS and output to a file
output_filename = get_output_filename(state)
generate_response = send_generate_request(
cleaned_part,
voice_to_use,
language_code,
temperature,
repetition_penalty,
output_filename,
)
audio_path = generate_response.get("data", {}).get("audio_path")
audio_files_all_paragraphs.append(audio_path)
# Combine audio files across paragraphs
final_output_file = combine(
audio_files_all_paragraphs, params["output_folder_wav"], state
)
else:
# Decode HTML entities first
cleaned_part = html.unescape(cleaned_string)
# Replace multiple instances of certain punctuation marks with a single instance
cleaned_part = re.sub(r"([!?.\u3002\uFF1F\uFF01\uFF0C])\1+", r"\1", cleaned_part)
# Replace "Chinese ellipsis" with a single dot
cleaned_part = re.sub(r"\u2026{1,2}", ". ", cleaned_part)
# Further clean to remove any other unwanted characters
cleaned_part = re.sub(r'[^a-zA-Z0-9\s.,;:!?\-\'"$\u0400-\u04FF\u00C0-\u00FF\u0150\u0151\u0170\u0171\u0900-\u097F\u2018\u2019\u201C\u201D\u3001\u3002\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\uF900-\uFAFF\u0600-\u06FF\u0750-\u077F\uFB50-\uFDFF\uFE70-\uFEFF\uAC00-\uD7A3\u1100-\u11FF\u3130-\u318F\uFF01\uFF0c\uFF1A\uFF1B\uFF1F]', '', cleaned_part)
# Remove all newline characters (single or multiple)
cleaned_part = re.sub(r"\n+", " ", cleaned_part)
# Process the part and give it a non-character name if being used vai API or standalone.
if "character_menu" in state:
output_file = Path(
f'{params["output_folder_wav"]}/{state["character_menu"]}_{int(time.time())}.wav'
)
else:
output_file = Path(
f'{params["output_folder_wav"]}/TTSOUT_{int(time.time())}.wav'
)
output_file_str = output_file.as_posix()
output_file = get_output_filename(state)
generate_response = send_generate_request(
cleaned_part,
params["voice"],
language_code,
temperature,
repetition_penalty,
output_file_str,
)
audio_path = generate_response.get("data", {}).get("audio_path")
final_output_file = audio_path
finally:
# Always release the lock, whether an exception occurs or not
process_lock.release()
else:
# The lock is already acquired
print(
f"[{params['branding']}Model] \033[91mWarning\033[0m Audio generation is already in progress. Please wait."
)
return
if generate_response.get("status") == "generate-success":
audio_path = generate_response.get("data", {}).get("audio_path")
if audio_path:
# Handle Gradio and playback
autoplay = "autoplay" if params["autoplay"] else ""
string = (f'<audio src="file/{final_output_file}" controls {autoplay}></audio>')
if params["show_text"]:
string += reinsert_images(cleaned_string, img_info)
shared.processing_message = "*Is typing...*"
return string
else:
print(f"[{params['branding']}Server] \033[91mWarning\033[0m No audio path in the response.")
else:
print(f"[{params['branding']}Server] \033[91mWarning\033[0m Audio generation failed. Status:", generate_response.get("message"),)
def get_output_filename(state):
if "character_menu" in state:
return Path(
f'{params["output_folder_wav"]}/{state["character_menu"]}_{str(uuid.uuid4())[:8]}.wav'
).as_posix()
else:
return Path(
f'{params["output_folder_wav"]}/TTSOUT_{str(uuid.uuid4())[:8]}.wav'
).as_posix()
###############################################
#### SEND GENERATION REQUEST TO TTS ENGINE ####
###############################################
def send_generate_request(
text, voice, language, temperature, repetition_penalty, output_file
):
url = f"{base_url}/api/generate"
payload = {
"text": text,
"voice": voice,
"language": language,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"output_file": output_file,
}
headers = {"Content-Type": "application/json"}
response = requests.post(url, json=payload, headers=headers)
return response.json()
################################
#### SUBPORCESS TERMINATION ####
################################
# Register the termination code to be executed at exit
atexit.register(lambda: process.terminate() if process.poll() is None else None)
######################
#### GRADIO STUFF ####
######################
def state_modifier(state):
if not params["activate"]:
return state
state["stream"] = False
return state
def update_narrator_enabled(value):
if value == "Enabled":
params["narrator_enabled"] = True
elif value == "Disabled":
params["narrator_enabled"] = False
def update_non_quoted_text_is(value):
global non_quoted_text_is
if value == "Narrator":
non_quoted_text_is = False
elif value == "Char":
non_quoted_text_is = True
def input_modifier(string, state):
if not params["activate"]:
return string
shared.processing_message = "*Is recording a voice message...*"
return string
def ui():
with gr.Accordion(params["branding"] + " TTS (XTTSv2)"):
# Activate alltalk_tts, Enable autoplay, Show text
with gr.Row():
activate = gr.Checkbox(value=params["activate"], label="Enable TTS")
autoplay = gr.Checkbox(value=params["autoplay"], label="Autoplay TTS")
show_text = gr.Checkbox(value=params["show_text"], label="Show Text")
# Low vram enable, Deepspeed enable, Remove trailing dots
with gr.Row():
low_vram = gr.Checkbox(
value=params["low_vram"], label="Enable Low VRAM Mode"
)
low_vram_play = gr.HTML(visible=False)
deepspeed_checkbox = gr.Checkbox(
value=params["deepspeed_activate"],
label="Enable DeepSpeed",
visible=deepspeed_installed,
)
deepspeed_checkbox_play = gr.HTML(visible=False)
remove_trailing_dots = gr.Checkbox(
value=params["remove_trailing_dots"], label='Remove trailing "."'
)
# TTS method, Character voice selection
with gr.Row():
model_loader_choices = ["API TTS", "API Local", "XTTSv2 Local"]
if finetuned_model:
model_loader_choices.append("XTTSv2 FT")
tts_radio_buttons = gr.Radio(
choices=model_loader_choices,
label="TTS Method (Each method sounds slightly different)",
value=gr_modelchoice, # Set the default value
)
tts_radio_buttons_play = gr.HTML(visible=False)
with gr.Row():
available_voices = get_available_voices()
default_voice = params[
"voice"
] # Check if the default voice is in the list of available voices
if default_voice not in available_voices:
default_voice = available_voices[
0
] # Choose the first available voice as the default
# Add allow_custom_value=True to the Dropdown
voice = gr.Dropdown(
available_voices,
label="Character Voice",
value=default_voice,
allow_custom_value=True,
)
create_refresh_button(
voice,
lambda: None,
lambda: {
"choices": get_available_voices(),
"value": params["voice"],
},
"refresh-button",
)
# Language, Narrator voice
with gr.Row():
language = gr.Dropdown(
languages.keys(), label="Language", value=params["language"]
)
with gr.Row():
narrator_voice_gr = gr.Dropdown(
get_available_voices(),
label="Narrator Voice",
allow_custom_value=True,
value=params["narrator_voice"],
)
create_refresh_button(
narrator_voice_gr,
lambda: None,
lambda: {
"choices": get_available_voices(),
"value": params["narrator_voice"],
},
"refresh-button",
)
# Temperature, Repetition Penalty
with gr.Row():
local_temperature_gr = gr.Slider(
minimum=0.05,
maximum=1,
step=0.05,
label="Temperature",
value=params["local_temperature"],
)
local_repetition_penalty_gr = gr.Slider(
minimum=0.5,
maximum=20,
step=0.5,
label="Repetition Penalty",
value=params["local_repetition_penalty"],
)
# Narrator enable, Non quoted text, Explanation text
with gr.Row():
with gr.Row():
narrator_enabled_gr = gr.Radio(
choices={"Enabled": "true", "Disabled": "false"},
label="Narrator",
value="Enabled" if params.get("narrator_enabled") else "Disabled",
)
non_quoted_text_is_gr = gr.Radio(
choices={"Character": "true", "Narrator": "false"},
label='Unmarked text NOT inside of * or " is',
value="Character" if non_quoted_text_is else "Narrator",
)
explanation_text = gr.HTML(
f"<p>⚙️ <a href='http://{params['ip_address']}:{params['port_number']}'>Settings and Documentation Page</a><a href='http://{params['ip_address']}:{params['port_number']}'></a>⚙️<br>- Low VRAM Mode and Deepspeed take 15 seconds to be enabled or disabled.<br>- The DeepSpeed checkbox is only visible if DeepSpeed is present.</p>"
)
# Preview speech
with gr.Row():
preview_text = gr.Text(
show_label=False,
placeholder="Preview text",
elem_id="silero_preview_text",
)
preview_play = gr.Button("Preview")
preview_audio = gr.HTML(visible=False)
with gr.Row():
convert = gr.Button("Permanently replace audios with the message texts")
convert_cancel = gr.Button("Cancel", visible=False)
convert_confirm = gr.Button(
"Confirm (cannot be undone)", variant="stop", visible=False
)
# Convert history with confirmation
convert_arr = [convert_confirm, convert, convert_cancel]
convert.click(
lambda: [
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
],
None,
convert_arr,
)