-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
409 lines (367 loc) · 21.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import os
import sys
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(ROOT_DIR) # model
sys.path.append(os.path.join(ROOT_DIR, 'models'))
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
import argparse
from datetime import datetime
import numpy as np
import tensorflow as tf
import importlib
import dataset
from io_util import *
import config
CONFIG = config.Config()
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='model_rpointnet', help='Model name [default: model_rpointnet]')
parser.add_argument('--log_dir', default='log', help='Log dir [default: log]')
parser.add_argument('--train_module', default='SPN', help='The module to be trained [options: SPN or RPOINTNET]')
parser.add_argument('--num_point', type=int, default=CONFIG.NUM_POINT, help='Point Number in a Scene [default: 18000]')
parser.add_argument('--num_point_ins', type=int, default=CONFIG.NUM_POINT_INS, help='Point Number of an Instance [default: 512]')
parser.add_argument('--num_category', type=int, default=CONFIG.NUM_CATEGORY, help='Maximum Number of Categories [default: 19]')
parser.add_argument('--num_sample', type=int, default=CONFIG.NUM_SAMPLE, help='Number of Sampled Seed Points [default: 256]')
parser.add_argument('--max_epoch', type=int, default=800, help='Epoch to run [default: 800]')
parser.add_argument('--batch_size', type=int, default=CONFIG.BATCH_SIZE, help='Batch Size during training [default: 2]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=55000, help='Decay step for lr decay [default: 55000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
parser.add_argument('--restore_model_path', default=None, help='Restore model path e.g. log/model.ckpt')
parser.add_argument('--restore_scope', default=None, help='Restore variable scope')
parser.add_argument('--KL_weight', type=float, default=1, help='Additional weight for KL Loss')
parser.add_argument('--is_augment', type=int, default=1, help='Whether to augment the training data')
FLAGS = parser.parse_args()
EPOCH_CNT = 0
CONFIG.BATCH_SIZE = FLAGS.batch_size
CONFIG.NUM_POINT = FLAGS.num_point
CONFIG.NUM_POINT_INS = FLAGS.num_point_ins
CONFIG.NUM_CATEGORY = FLAGS.num_category
CONFIG.NUM_SAMPLE = FLAGS.num_sample
CONFIG.TRAIN_MODULE = [FLAGS.train_module]
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
KL_WEIGHT = FLAGS.KL_weight
IS_AUGMENT = FLAGS.is_augment
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(ROOT_DIR, 'models', FLAGS.model+'.py')
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp train.py %s' % (LOG_DIR)) # bkp of train procedure
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
if not os.path.exists(os.path.join(ROOT_DIR, 'data/cache')):
os.makedirs(os.path.join(ROOT_DIR, 'data/cache'))
SRC_MESH_PATH = os.path.join(ROOT_DIR, 'data/scannet_preprocessed/mesh/scans')
SRC_LABEL_PATH = os.path.join(ROOT_DIR, 'data/scannet_preprocessed/label/scans')
TRAIN_LIST = os.path.join(ROOT_DIR, 'data/scannet/scannet_train.txt')
VAL_LIST = os.path.join(ROOT_DIR, 'data/scannet/scannet_val.txt')
TRAIN_CACHE = os.path.join(ROOT_DIR, 'data/cache/train_%d_%d.npz'%(CONFIG.NUM_POINT, CONFIG.NUM_POINT_INS))
VAL_CACHE = os.path.join(ROOT_DIR, 'data/cache/val_%d_%d.npz'%(CONFIG.NUM_POINT, CONFIG.NUM_POINT_INS))
TRAIN_DATASET = dataset.ScanNetDataset(SRC_MESH_PATH, SRC_LABEL_PATH, TRAIN_LIST, TRAIN_CACHE, npoint=CONFIG.NUM_POINT, npoint_ins=CONFIG.NUM_POINT_INS, is_augment=IS_AUGMENT)
VAL_DATASET = dataset.ScanNetDataset(SRC_MESH_PATH, SRC_LABEL_PATH, VAL_LIST, VAL_CACHE, npoint=CONFIG.NUM_POINT, npoint_ins=CONFIG.NUM_POINT_INS, is_augment=False, permute_points=False)
CONFIG.NUM_GROUP = np.maximum(TRAIN_DATASET.ngroup, VAL_DATASET.ngroup)
TRAIN_DATASET.ngroup = CONFIG.NUM_GROUP
VAL_DATASET.ngroup = CONFIG.NUM_GROUP
def get_loss_weight(batch):
alpha = 1.0*KL_WEIGHT - tf.train.exponential_decay(
1.0*KL_WEIGHT, # Base learning rate.
batch * CONFIG.BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
return alpha
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * CONFIG.BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch * CONFIG.BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train():
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
pc_pl, color_pl, pc_ins_pl, group_label_pl, group_indicator_pl, seg_label_pl, bbox_ins_pl = MODEL.placeholder_inputs(CONFIG)
is_training_pl = tf.placeholder(tf.bool, shape=())
smpw_pl = tf.placeholder(tf.float32, shape=(CONFIG.BATCH_SIZE, CONFIG.NUM_POINT))
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
alpha = get_loss_weight(batch)
tf.summary.scalar('bn_decay', bn_decay)
tf.summary.scalar('alpha', alpha)
print toYellow("---------- Get model and loss------------")
# Get model and loss
end_points = MODEL.rpointnet(pc_pl, color_pl, pc_ins_pl, group_label_pl, group_indicator_pl, seg_label_pl, bbox_ins_pl, CONFIG, is_training_pl, mode='training', bn_decay=bn_decay)
loss, end_points = MODEL.get_loss(end_points, CONFIG, alpha, smpw_pl, mode='training')
tf.summary.scalar('loss', loss)
tf.summary.scalar('spn_class_loss', end_points['spn_class_loss'])
tf.summary.scalar('recons_loss', end_points['recons_loss'])
tf.summary.scalar('shift_loss', end_points['shift_loss'])
tf.summary.scalar('sem_loss', end_points['sem_loss'])
tf.summary.scalar('kl_loss', end_points['kl_loss'])
if 'RPOINTNET' in CONFIG.TRAIN_MODULE:
tf.summary.scalar('rpointnet_class_loss', end_points['rpointnet_class_loss'])
tf.summary.scalar('rpointnet_bbox_loss', end_points['rpointnet_bbox_loss'])
tf.summary.scalar('rpointnet_mask_loss', end_points['rpointnet_mask_loss'])
print toYellow("----------- Get training operator--------------")
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph)
# Init variables
init = tf.global_variables_initializer()
sess.run(init)
if FLAGS.restore_model_path is not None:
if FLAGS.restore_scope is not None:
loadvars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=FLAGS.restore_scope)
else:
loadvars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
saver_restore = tf.train.Saver(var_list=loadvars)
saver_restore.restore(sess, FLAGS.restore_model_path)
print('RESTORE MODEL FROM ' + FLAGS.restore_model_path)
ops = {'pc_pl': pc_pl,
'color_pl': color_pl,
'pc_ins_pl': pc_ins_pl,
'group_label_pl': group_label_pl,
'group_indicator_pl': group_indicator_pl,
'seg_label_pl': seg_label_pl,
'bbox_ins_pl': bbox_ins_pl,
'smpw_pl': smpw_pl,
'is_training_pl': is_training_pl,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch,
'end_points': end_points}
best_loss = 1e20
sess.graph.finalize()
for epoch in range(MAX_EPOCH):
log_string(toYellow('************ EPOCH %03d ***********' % (epoch)))
log_string(toBlue('Training Model: ' + FLAGS.model))
log_string(toGreen('Saving in: ' + LOG_DIR))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer)
epoch_loss = eval_one_epoch(sess, ops, test_writer)
if epoch_loss < best_loss:
best_loss = epoch_loss
save_path = saver.save(sess, os.path.join(LOG_DIR, "best_model_epoch_%03d.ckpt"%(epoch)))
log_string(toCyan("Model saved in file: %s" % save_path))
# Save the variables to disk.
if epoch % 10 == 0:
save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt"))
log_string(toCyan("Model saved in file: %s" % save_path))
def get_batch(dataset, idxs, start_idx, end_idx):
bsize = end_idx-start_idx
batch_pc = np.zeros((bsize, CONFIG.NUM_POINT, 3))
batch_color = np.zeros((bsize, CONFIG.NUM_POINT, 3))
batch_pc_ins = np.zeros((bsize, CONFIG.NUM_GROUP, CONFIG.NUM_POINT_INS, 3))
batch_group_label = np.zeros((bsize, CONFIG.NUM_POINT), dtype=np.int32)
batch_group_indicator = np.zeros((bsize, CONFIG.NUM_GROUP), dtype=np.int32)
batch_seg_label = np.zeros((bsize, CONFIG.NUM_POINT), dtype=np.int32)
batch_bbox_ins = np.zeros((bsize, CONFIG.NUM_GROUP, 6), dtype=np.float32)
batch_smpw = np.ones((bsize, CONFIG.NUM_POINT), dtype=np.float32)
for i in range(bsize):
pc, color, pc_ins, group_label, group_indicator, seg_label, bbox_ins = dataset[idxs[i+start_idx]]
batch_pc[i,...] = pc
batch_color[i,...] = color
batch_pc_ins[i,...] = pc_ins
batch_group_label[i,...] = group_label
batch_group_indicator[i,...] = group_indicator
batch_seg_label[i,...] = seg_label
batch_bbox_ins[i,...] = bbox_ins
return batch_pc, batch_color, batch_pc_ins, batch_group_label, batch_group_indicator, batch_seg_label, batch_bbox_ins, batch_smpw
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
# Shuffle train samples
train_idxs = np.arange(0, len(TRAIN_DATASET))
np.random.shuffle(train_idxs)
num_batches = len(TRAIN_DATASET)/CONFIG.BATCH_SIZE
log_string(toYellow(str(datetime.now())))
loss_sum = 0
recons_loss_sum = 0
kl_loss_sum = 0
shift_loss_sum = 0
sem_loss_sum = 0
spn_class_loss_sum = 0
rpointnet_class_loss_sum = 0
rpointnet_bbox_loss_sum = 0
rpointnet_mask_loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * CONFIG.BATCH_SIZE
end_idx = (batch_idx+1) * CONFIG.BATCH_SIZE
batch_pc, batch_color, batch_pc_ins, batch_group_label, batch_group_indicator, batch_seg_label, batch_bbox_ins, batch_smpw = \
get_batch(TRAIN_DATASET, train_idxs, start_idx, end_idx)
feed_dict = {ops['pc_pl']: batch_pc,
ops['color_pl']: batch_color,
ops['pc_ins_pl']: batch_pc_ins,
ops['group_label_pl']: batch_group_label,
ops['group_indicator_pl']: batch_group_indicator,
ops['seg_label_pl']: batch_seg_label,
ops['bbox_ins_pl']: batch_bbox_ins,
ops['smpw_pl']: batch_smpw,
ops['is_training_pl']: is_training}
if 'RPOINTNET' in CONFIG.TRAIN_MODULE:
summary, step, _, loss_val, recons_loss_val, kl_loss_val, shift_loss_val, sem_loss_val, spn_class_loss_val, rpointnet_class_loss_val, rpointnet_bbox_loss_val, rpointnet_mask_loss_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['end_points']['recons_loss'], ops['end_points']['kl_loss'],
ops['end_points']['shift_loss'], ops['end_points']['sem_loss'], ops['end_points']['spn_class_loss'], ops['end_points']['rpointnet_class_loss'],
ops['end_points']['rpointnet_bbox_loss'], ops['end_points']['rpointnet_mask_loss']], feed_dict=feed_dict)
elif 'SPN' in CONFIG.TRAIN_MODULE:
summary, step, _, loss_val, recons_loss_val, kl_loss_val, shift_loss_val, sem_loss_val, spn_class_loss_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['end_points']['recons_loss'], ops['end_points']['kl_loss'],
ops['end_points']['shift_loss'], ops['end_points']['sem_loss'], ops['end_points']['spn_class_loss']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
loss_sum += loss_val
recons_loss_sum += recons_loss_val
kl_loss_sum += kl_loss_val
shift_loss_sum += shift_loss_val
sem_loss_sum += sem_loss_val
spn_class_loss_sum += spn_class_loss_val
if 'RPOINTNET' in CONFIG.TRAIN_MODULE:
rpointnet_class_loss_sum += rpointnet_class_loss_val
rpointnet_bbox_loss_sum += rpointnet_bbox_loss_val
rpointnet_mask_loss_sum += rpointnet_mask_loss_val
if (batch_idx+1)%10 == 0:
log_string(toBlue(' -- %03d / %03d --' % (batch_idx+1, num_batches)))
log_string(toYellow(' -- Model: ' + FLAGS.model))
log_string(toGreen(' -- LOG DIR: ' + FLAGS.log_dir))
log_string(toMagenta('mean loss: %f' % (loss_sum / 10)))
log_string(toMagenta('mean reconstruction loss: %f' % (recons_loss_sum / 10)))
log_string(toMagenta('mean kl-divergence loss: %f' % (kl_loss_sum / 10)))
log_string(toMagenta('mean shift loss: %f' % (shift_loss_sum / 10)))
log_string(toMagenta('mean sem loss: %f' % (sem_loss_sum / 10)))
log_string(toMagenta('mean spn class loss: %f' % (spn_class_loss_sum / 10)))
if 'RPOINTNET' in CONFIG.TRAIN_MODULE:
log_string(toMagenta('mean rpointnet class loss: %f' % (rpointnet_class_loss_sum / 10)))
log_string(toMagenta('mean rpointnet bbox loss: %f' % (rpointnet_bbox_loss_sum / 10)))
log_string(toMagenta('mean rpointnet mask loss: %f' % (rpointnet_mask_loss_sum / 10)))
loss_sum = 0
recons_loss_sum = 0
kl_loss_sum = 0
shift_loss_sum = 0
sem_loss_sum = 0
spn_class_loss_sum = 0
rpointnet_class_loss_sum = 0
rpointnet_bbox_loss_sum = 0
rpointnet_mask_loss_sum = 0
def eval_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
global EPOCH_CNT
is_training = False
test_idxs = np.arange(0, len(VAL_DATASET))
num_batches = len(VAL_DATASET)/CONFIG.BATCH_SIZE
log_string(toYellow(str(datetime.now())))
log_string(toYellow('---- EPOCH %03d EVALUATION ----'%(EPOCH_CNT)))
loss_sum = 0
recons_loss_sum = 0
kl_loss_sum = 0
shift_loss_sum = 0
sem_loss_sum = 0
spn_class_loss_sum = 0
rpointnet_class_loss_sum = 0
rpointnet_bbox_loss_sum = 0
rpointnet_mask_loss_sum = 0
cum_intersection = np.zeros(18)
cum_union = np.zeros(18)
for batch_idx in range(num_batches):
start_idx = batch_idx * CONFIG.BATCH_SIZE
end_idx = (batch_idx+1) * CONFIG.BATCH_SIZE
batch_pc, batch_color, batch_pc_ins, batch_group_label, batch_group_indicator, batch_seg_label, batch_bbox_ins, batch_smpw = get_batch(VAL_DATASET, test_idxs, start_idx, end_idx)
feed_dict = {ops['pc_pl']: batch_pc,
ops['color_pl']: batch_color,
ops['pc_ins_pl']: batch_pc_ins,
ops['group_label_pl']: batch_group_label,
ops['group_indicator_pl']: batch_group_indicator,
ops['seg_label_pl']: batch_seg_label,
ops['bbox_ins_pl']: batch_bbox_ins,
ops['smpw_pl']: batch_smpw,
ops['is_training_pl']: is_training}
if 'RPOINTNET' in CONFIG.TRAIN_MODULE:
summary, step, loss_val, pred_val, sem_labels_val, recons_loss_val, kl_loss_val, shift_loss_val, sem_loss_val, spn_class_loss_val, rpointnet_class_loss_val, rpointnet_bbox_loss_val, rpointnet_mask_loss_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['end_points']['sem_class_logits'], ops['end_points']['sem_labels'], ops['end_points']['recons_loss'], ops['end_points']['kl_loss'], ops['end_points']['shift_loss'], ops['end_points']['sem_loss'], ops['end_points']['spn_class_loss'], ops['end_points']['rpointnet_class_loss'], ops['end_points']['rpointnet_bbox_loss'], ops['end_points']['rpointnet_mask_loss']], feed_dict=feed_dict)
elif 'SPN' in CONFIG.TRAIN_MODULE:
summary, step, loss_val, pred_val, sem_labels_val, recons_loss_val, kl_loss_val, shift_loss_val, sem_loss_val, spn_class_loss_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['end_points']['sem_class_logits'], ops['end_points']['sem_labels'], ops['end_points']['recons_loss'], ops['end_points']['kl_loss'], ops['end_points']['shift_loss'], ops['end_points']['sem_loss'], ops['end_points']['spn_class_loss']], feed_dict=feed_dict)
pred_val = np.argmax(pred_val, 2) # BxN
for s in range(18):
cum_intersection[s] += np.sum(np.logical_and(pred_val==(s+1), sem_labels_val==(s+1)))
cum_union[s] += np.sum(np.logical_or(pred_val==(s+1), sem_labels_val==(s+1)))
test_writer.add_summary(summary, step)
if 'RPOINTNET' in CONFIG.TRAIN_MODULE:
loss_sum += (rpointnet_class_loss_val+rpointnet_bbox_loss_val+rpointnet_mask_loss_val)
else:
loss_sum += (recons_loss_val+kl_loss_val+shift_loss_val+spn_class_loss_val+sem_loss_val)
recons_loss_sum += recons_loss_val
kl_loss_sum += kl_loss_val
shift_loss_sum += shift_loss_val
sem_loss_sum += sem_loss_val
spn_class_loss_sum += spn_class_loss_val
if 'RPOINTNET' in CONFIG.TRAIN_MODULE:
rpointnet_class_loss_sum += rpointnet_class_loss_val
rpointnet_bbox_loss_sum += rpointnet_bbox_loss_val
rpointnet_mask_loss_sum += rpointnet_mask_loss_val
iou = np.divide(cum_intersection, cum_union+1e-8)
meaniou = np.mean(iou)
log_string('eval mean loss: %f' % (loss_sum / float(num_batches)))
log_string('eval mean reconstruction loss: %f' % (recons_loss_sum / float(num_batches)))
log_string('eval mean kl-divergence loss: %f' % (kl_loss_sum / float(num_batches)))
log_string('eval mean shift loss: %f' % (shift_loss_sum / float(num_batches)))
log_string('eval mean sem loss: %f' % (sem_loss_sum / float(num_batches)))
log_string('eval mean iou: %f' % (meaniou))
log_string('eval mean spn class loss: %f' % (spn_class_loss_sum / float(num_batches)))
if 'RPOINTNET' in CONFIG.TRAIN_MODULE:
log_string('eval mean rpointnet class loss: %f' % (rpointnet_class_loss_sum / float(num_batches)))
log_string('eval mean rpointnet bbox loss: %f' % (rpointnet_bbox_loss_sum / float(num_batches)))
log_string('eval mean rpointnet mask loss: %f' % (rpointnet_mask_loss_sum / float(num_batches)))
EPOCH_CNT += 1
if 'RPOINTNET' in CONFIG.TRAIN_MODULE:
return (rpointnet_class_loss_sum + rpointnet_bbox_loss_sum + rpointnet_mask_loss_sum)/float(num_batches)
elif 'SPN' in CONFIG.TRAIN_MODULE:
return (recons_loss_sum)/float(num_batches)
if __name__ == "__main__":
log_string('pid: %s'%(str(os.getpid())))
train()
LOG_FOUT.close()