-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoptimize.py
627 lines (440 loc) · 24.7 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import random
from constants import *
import math
from itertools import *
from utils import *
from scipy.optimize import root
from scipy.special import digamma, polygamma, gammaln
import numpy as np
class NegBinomialOptimizationFailure(Exception):
pass
class PoissonOptimizationFailure(Exception):
pass
class ZeroDeltaException(NegBinomialOptimizationFailure):
pass
OPTIMIZATION_LOGGING_LEVEL = 1
def dot_product(a, b):
return sum(aa * bb for aa, bb in izip(a, b))
def neg_bionomial_log_likelihood_derivative(par, blocks, peak_posteriors, timepoint_idx,
optimize_foreground=True):
delta = par[0]
betas = par[1:]
d_delta = 0.
n_betas = len(betas)
d_betas = [0.] * n_betas
for block_id in blocks:
block_signal = blocks[block_id][FOREGROUND_SIGNAL][timepoint_idx]
block_covariates = blocks[block_id][BLOCK_COVARIATES][timepoint_idx]
block_peak_posteriors = peak_posteriors[block_id][timepoint_idx]
for pos_idx in xrange(len(block_signal)):
p_signal = block_signal[pos_idx]
p_covariates = block_covariates[pos_idx]
if optimize_foreground:
weight = block_peak_posteriors[pos_idx]
else:
weight = 1 - block_peak_posteriors[pos_idx]
mu = math.exp(dot_product(p_covariates, betas))
xi = mu + delta
d_delta += weight * (digamma(p_signal + delta) -
digamma(delta) + math.log(delta) + 1 -
math.log(xi) -
delta / xi -
p_signal / xi)
for beta_idx in xrange(n_betas):
d_betas[beta_idx] += weight * (p_signal * p_covariates[beta_idx] -
(p_signal + delta) * p_covariates[beta_idx] * mu / xi)
return np.array([d_delta] + d_betas)
def neg_bionomial_log_likelihood_derivative_of_betas_shared_beta(par,
delta,
peak_signal_array,
peak_covariates_matrix,
all_shared_peak_covariates_matrix,
peak_posteriors_array,
background_posteriors_array,
all_signal_array,
all_weights):
shared_beta = par[0]
peak_beta_0 = par[1]
bgr_beta_0 = par[2]
peak_betas = np.array([shared_beta, peak_beta_0])
bgr_betas = np.array([shared_beta, bgr_beta_0])
peak_mu = np.exp(np.dot(peak_betas, peak_covariates_matrix))
bgr_mu = np.exp(np.dot(bgr_betas, peak_covariates_matrix))
all_mu = np.concatenate((peak_mu, bgr_mu))
d_shared_beta = np.sum(all_weights * (all_signal_array * all_shared_peak_covariates_matrix[0] -
(all_signal_array + delta) * all_shared_peak_covariates_matrix[0] * all_mu /
(all_mu + delta)))
d_peak_beta_0 = np.sum(peak_posteriors_array * (peak_signal_array * peak_covariates_matrix[1] -
(peak_signal_array + delta) * peak_covariates_matrix[1] * peak_mu / (peak_mu + delta)))
d_bgr_beta_0 = np.sum(background_posteriors_array * (peak_signal_array * peak_covariates_matrix[1] -
(peak_signal_array + delta) * peak_covariates_matrix[1] * bgr_mu / (bgr_mu + delta)))
return np.array([d_shared_beta, d_peak_beta_0, d_bgr_beta_0])
def neg_bionomial_log_likelihood_derivative_of_betas(par,
delta,
peak_signal_array,
peak_covariates_matrix,
peak_posteriors):
betas = par
mu = np.exp(np.dot(betas, peak_covariates_matrix))
xi = mu + delta
d_betas = np.sum(peak_posteriors * (peak_signal_array * peak_covariates_matrix -
(peak_signal_array + delta) * peak_covariates_matrix * mu / xi), axis=1)
return d_betas
def neg_bionomial_log_likelihood_derivative_Jacobian(par, blocks, peak_posteriors, timepoint_idx,
optimize_foreground=True):
delta = par[0]
betas = par[1:]
n_betas = len(betas)
d_delta = [0.] * (n_betas + 1)
d_betas = matrix(n_betas, n_betas + 1, default=0.)
for block_id in blocks:
block_signal = blocks[block_id][FOREGROUND_SIGNAL][timepoint_idx]
block_covariates = blocks[block_id][BLOCK_COVARIATES][timepoint_idx]
block_peak_posteriors = peak_posteriors[block_id][timepoint_idx]
for pos_idx in xrange(len(block_signal)):
p_signal = block_signal[pos_idx]
p_covariates = block_covariates[pos_idx]
if optimize_foreground:
weight = block_peak_posteriors[pos_idx]
else:
weight = 1 - block_peak_posteriors[pos_idx]
mu = math.exp(dot_product(p_covariates, betas))
xi = mu + delta
# update dF_{Delta_t}/dDelta_t
d_delta[0] += weight * (polygamma(1, p_signal + delta) -
polygamma(1, delta) +
1. / delta -
1 / xi -
(mu - p_signal) / (xi ** 2))
for beta_j in xrange(n_betas):
# update dF_{Delta_t}/dBeta_{t,j}
d_delta[1 + beta_j] += weight * p_covariates[beta_j] * mu * (
(delta + p_signal) / (xi ** 2) - 1. / xi)
# update dF_{beta_{t,j}}/dDelta_t
d_betas[beta_j][0] += weight * p_covariates[beta_j] * mu * (p_signal - mu) / (xi ** 2)
# update dF_{Beta_{t,j}}/dBeta_{t,k}
for beta_k in xrange(n_betas):
d_betas[beta_j][1 + beta_k] += weight * p_covariates[beta_j] * (p_signal + delta) * (
-p_covariates[beta_k] * mu * delta / (xi ** 2)
)
return np.array([d_delta] + d_betas)
def optimize_Poisson_for_pair_of_NegBinomials(peak_signal_array, peak_covariates_matrix, peak_posteriors_array, background_posteriors_array, n_covariates):
def score(par, peak_signal_array, peak_covariates_matrix, peak_posteriors_array):
betas = par
mu = np.exp(np.dot(betas, peak_covariates_matrix))
return np.sum(peak_posteriors_array * peak_covariates_matrix * (peak_signal_array - mu), axis=1)
predicted_means = []
for foreground in [True, False]:
if foreground:
weights = peak_posteriors_array
else:
weights = background_posteriors_array
solution = root(score,
np.array([1] * n_covariates),
args=(peak_signal_array, peak_covariates_matrix, weights))
if not solution.success:
echo("Error estimating the poisson parameters in Signal NBs:", solution.message, level=OPTIMIZATION_LOGGING_LEVEL)
raise PoissonOptimizationFailure
betas = solution.x
mu = np.exp(np.dot(betas, peak_covariates_matrix))
predicted_means.append(mu)
weights = np.concatenate((peak_posteriors_array, background_posteriors_array))
y = np.concatenate((peak_signal_array, peak_signal_array))
mu = np.concatenate(tuple(predicted_means))
delta = delta_max_likelihood(y, mu, weights)
return delta, predicted_means[0], predicted_means[1]
def optimize_Poisson_for_pair_of_NegBinomials_shared_beta(peak_signal_array,
all_signal_array,
peak_covariates_matrix,
all_shared_peak_covariates_matrix,
peak_posteriors_array,
background_posteriors_array,
all_posteriors_array,
n_covariates):
def score(par,
peak_signal_array,
all_signal_array,
peak_covariates_matrix,
all_shared_peak_covariates_matrix,
peak_posteriors_array,
background_posteriors_array,
all_posteriors_array):
shared_beta = par[0]
peak_beta_0 = par[1]
bgr_beta_0 = par[2]
peak_betas = [shared_beta, peak_beta_0]
bgr_betas = [shared_beta, bgr_beta_0]
peak_mu = np.exp(np.dot(peak_betas, peak_covariates_matrix))
bgr_mu = np.exp(np.dot(bgr_betas, peak_covariates_matrix))
all_mu = np.concatenate((peak_mu, bgr_mu))
d_shared_beta = np.sum(all_posteriors_array * all_shared_peak_covariates_matrix[0] * (all_signal_array - all_mu))
d_peak_beta_0 = np.sum(peak_posteriors_array * peak_covariates_matrix[1] * (peak_signal_array - peak_mu))
d_bgr_beta_0 = np.sum(background_posteriors_array * peak_covariates_matrix[1] * (peak_signal_array - bgr_mu))
return [d_shared_beta, d_peak_beta_0, d_bgr_beta_0]
init_betas = np.array([1] * (2 * n_covariates - 1))
solution = root(score,
init_betas,
args=(peak_signal_array,
all_signal_array,
peak_covariates_matrix,
all_shared_peak_covariates_matrix,
peak_posteriors_array,
background_posteriors_array,
all_posteriors_array))
if not solution.success:
echo("Error estimating the poisson parameters in Signal NBs:", solution.message, level=OPTIMIZATION_LOGGING_LEVEL)
raise PoissonOptimizationFailure
shared_beta, peak_beta_0, bgr_beta_0 = solution.x
peak_mu = np.exp(np.dot([shared_beta, peak_beta_0], peak_covariates_matrix))
bgr_mu = np.exp(np.dot([shared_beta, bgr_beta_0], peak_covariates_matrix))
all_mu = np.concatenate((peak_mu, bgr_mu))
delta = delta_max_likelihood(all_signal_array, all_mu, all_posteriors_array)
return delta, peak_mu, bgr_mu
def optimize_a_pair_of_NegBinomials_jointly(peak_signal_array, peak_covariates_matrix, peak_posteriors_array,
timepoint_idx, init_fgr_betas, init_bgr_betas, n_covariates):
cur_likelihood = -float('inf')
MAX_ITERATIONS = 25
MIN_DIFF = 0.0001220703125
diff = 1
background_posteriors_array = 1 - peak_posteriors_array
cur_fgr_betas = np.array(init_fgr_betas)
cur_bgr_betas = np.array(init_bgr_betas)
try:
init_delta, predicted_peak_means, predicted_background_means = optimize_Poisson_for_pair_of_NegBinomials(peak_signal_array,
peak_covariates_matrix,
peak_posteriors_array,
background_posteriors_array,
n_covariates)
except ZeroDeltaException:
echo('WARNING: Zero delta exception has occurred while estimating initial Poisson for SIGNAL NBs for time point', timepoint_idx, level=OPTIMIZATION_LOGGING_LEVEL)
return None, None, None, None, timepoint_idx
except PoissonOptimizationFailure:
echo('WARNING: Poisson optimization failure has occurred while estimating SIGNAL NBs for time point', timepoint_idx, level=OPTIMIZATION_LOGGING_LEVEL)
return None, None, None, None, timepoint_idx
cur_fgr_delta = cur_bgr_delta = init_delta
all_posteriors_array = np.concatenate((peak_posteriors_array, background_posteriors_array))
all_signal_array = np.concatenate((peak_signal_array, peak_signal_array))
for iteration_idx in xrange(MAX_ITERATIONS):
if diff < MIN_DIFF:
break
solution = root(neg_bionomial_log_likelihood_derivative_of_betas,
cur_fgr_betas,
args=(cur_fgr_delta, peak_signal_array, peak_covariates_matrix, peak_posteriors_array))
if not solution.success:
echo("Error estimating the negative binomial parameters in foreground signal NBs:", solution.message, level=OPTIMIZATION_LOGGING_LEVEL)
return None, None, None, None, timepoint_idx
cur_fgr_betas = solution.x
solution = root(neg_bionomial_log_likelihood_derivative_of_betas,
cur_bgr_betas,
args=(cur_bgr_delta, peak_signal_array, peak_covariates_matrix, background_posteriors_array))
if not solution.success:
echo("Error estimating the negative binomial parameters in background signal NBs:", solution.message, level=OPTIMIZATION_LOGGING_LEVEL)
return None, None, None, None, timepoint_idx
cur_bgr_betas = solution.x
try:
cur_fgr_delta = cur_bgr_delta = delta_max_likelihood(all_signal_array,
np.concatenate((predicted_peak_means,
predicted_background_means)),
all_posteriors_array)
except ZeroDeltaException:
echo('WARNING: Zero delta exception has occurred while estimating SIGNAL NBs for time point', timepoint_idx, level=OPTIMIZATION_LOGGING_LEVEL)
return None, None, None, None, timepoint_idx
predicted_peak_means = np.exp(np.dot(cur_fgr_betas, peak_covariates_matrix))
predicted_background_means = np.exp(np.dot(cur_bgr_betas, peak_covariates_matrix))
def log_likelihood(w, delta, y, mu):
return np.sum(w * (gammaln(delta + y)
- gammaln(delta)
+ delta * np.log(delta)
- (delta + y) * np.log(mu + delta)
+ y * np.log(mu)))
prev_likelihood = cur_likelihood
cur_likelihood = log_likelihood(peak_posteriors_array,
cur_fgr_delta,
peak_signal_array,
predicted_peak_means) + \
log_likelihood(background_posteriors_array,
cur_bgr_delta,
peak_signal_array,
predicted_background_means)
diff = cur_likelihood - prev_likelihood
return cur_fgr_delta, cur_fgr_betas, cur_bgr_delta, cur_bgr_betas, timepoint_idx
def optimize_a_pair_of_NegBinomials_jointly_shared_beta(peak_signal_array,
peak_covariates_matrix,
peak_posteriors_array,
timepoint_idx,
init_fgr_betas,
init_bgr_betas,
n_covariates):
cur_likelihood = -float('inf')
MAX_ITERATIONS = 25
MIN_DIFF = 0.0001220703125
diff = 1
background_posteriors_array = 1 - peak_posteriors_array
cur_betas = np.array([init_fgr_betas[0], init_fgr_betas[1], init_bgr_betas[1]])
cur_fgr_betas = np.array([cur_betas[0], cur_betas[1]])
cur_bgr_betas = np.array([cur_betas[0], cur_betas[2]])
all_shared_peak_covariates_matrix = np.concatenate((peak_covariates_matrix, peak_covariates_matrix), axis=1)
all_posteriors_array = np.concatenate((peak_posteriors_array, background_posteriors_array))
all_signal_array = np.concatenate((peak_signal_array, peak_signal_array))
try:
init_delta, predicted_peak_means, predicted_background_means = \
optimize_Poisson_for_pair_of_NegBinomials_shared_beta(peak_signal_array,
all_signal_array,
peak_covariates_matrix,
all_shared_peak_covariates_matrix,
peak_posteriors_array,
background_posteriors_array,
all_posteriors_array,
n_covariates)
except ZeroDeltaException:
echo('WARNING: Zero delta exception has occurred while estimating initial Poisson for SIGNAL NBs for time point', timepoint_idx, level=OPTIMIZATION_LOGGING_LEVEL)
return None, None, None, None, timepoint_idx
except PoissonOptimizationFailure:
echo('WARNING: Poisson optimization failure has occurred while estimating SIGNAL NBs for time point', timepoint_idx, level=OPTIMIZATION_LOGGING_LEVEL)
return None, None, None, None, timepoint_idx
cur_fgr_delta = cur_bgr_delta = init_delta
for iteration_idx in xrange(MAX_ITERATIONS):
if diff < MIN_DIFF:
break
solution = root(neg_bionomial_log_likelihood_derivative_of_betas_shared_beta,
cur_betas,
args=(cur_fgr_delta,
peak_signal_array,
peak_covariates_matrix,
all_shared_peak_covariates_matrix,
peak_posteriors_array,
background_posteriors_array,
all_signal_array,
all_posteriors_array))
if not solution.success:
echo("Error estimating the negative binomial parameters in foreground signal NBs:", solution.message, level=OPTIMIZATION_LOGGING_LEVEL)
return None, None, None, None, timepoint_idx
cur_betas = solution.x
cur_fgr_betas = np.array([cur_betas[0], cur_betas[1]])
cur_bgr_betas = np.array([cur_betas[0], cur_betas[2]])
try:
cur_fgr_delta = cur_bgr_delta = delta_max_likelihood(all_signal_array,
np.concatenate((predicted_peak_means,
predicted_background_means)),
all_posteriors_array)
except ZeroDeltaException:
echo('WARNING: Zero delta exception has occurred while estimating SIGNAL NBs for time point', timepoint_idx, level=OPTIMIZATION_LOGGING_LEVEL)
return None, None, None, None, timepoint_idx
predicted_peak_means = np.exp(np.dot(cur_fgr_betas, peak_covariates_matrix))
predicted_background_means = np.exp(np.dot(cur_bgr_betas, peak_covariates_matrix))
def log_likelihood(w, delta, y, mu):
return np.sum(w * (gammaln(delta + y)
- gammaln(delta)
+ delta * np.log(delta)
- (delta + y) * np.log(mu + delta)
+ y * np.log(mu)))
prev_likelihood = cur_likelihood
cur_likelihood = log_likelihood(peak_posteriors_array,
cur_fgr_delta,
peak_signal_array,
predicted_peak_means) + \
log_likelihood(background_posteriors_array,
cur_bgr_delta,
peak_signal_array,
predicted_background_means)
diff = cur_likelihood - prev_likelihood
if cur_fgr_delta < 0.001:
raise NegBinomialOptimizationFailure
return cur_fgr_delta, cur_fgr_betas, cur_bgr_delta, cur_bgr_betas, timepoint_idx
def optimize_Poisson(y, x, weights, n_covariates):
def score(par, y, x, weights):
betas = par
mu = np.exp(np.dot(betas, x))
return np.sum(weights * x * (y - mu), axis=1)
solution = root(score,
np.array([1] * n_covariates),
args=(y, x, weights))
if not solution.success:
echo("Error estimating the poisson parameters in dynamics NBs:", solution.message, level=OPTIMIZATION_LOGGING_LEVEL)
raise PoissonOptimizationFailure
betas = solution.x
predicted_means = np.exp(np.dot(betas, x))
delta = delta_max_likelihood(y, predicted_means, weights)
return delta, predicted_means
def optimize_NegBinomial(y, x, weights, init_betas):
y = np.array(y)
x = np.array(x)
weights = np.array(weights)
cur_betas = np.array(init_betas)
cur_likelihood = -float('inf')
MAX_ITERATIONS = 25
MIN_DIFF = 0.0001220703125
diff = 1
cur_delta, predicted_diff_means = optimize_Poisson(y, x, weights, 1)
for iteration_idx in xrange(MAX_ITERATIONS):
if diff < MIN_DIFF:
break
solution = root(neg_bionomial_log_likelihood_derivative_of_betas,
cur_betas,
args=(cur_delta, y, x, weights))
if not solution.success:
raise NegBinomialOptimizationFailure
cur_betas = solution.x
cur_delta = delta_max_likelihood(y, predicted_diff_means, weights)
predicted_diff_means = np.exp(np.dot(cur_betas, x))
def log_likelihood(w, delta, y, mu):
return np.sum(w * (gammaln(delta + y)
- gammaln(delta)
+ delta * np.log(delta)
- (delta + y) * np.log(mu + delta)
+ y * np.log(mu)))
prev_likelihood = cur_likelihood
cur_likelihood = log_likelihood(weights, cur_delta, y, predicted_diff_means)
diff = cur_likelihood - prev_likelihood
if cur_delta < 0.001:
raise NegBinomialOptimizationFailure
return cur_delta, cur_betas
def delta_max_likelihood(y, mu, weights):
# This code was adapted from the MASS R package
n = sum(weights)
def score(th, mu, y, w):
return np.sum(w * (digamma(th + y) - digamma(th) + np.log(th) +
1 - np.log(th + mu) - (y + th) / (mu + th)))
def info(th, mu, y, w):
return np.sum(w * (- polygamma(1, th + y) + polygamma(1, th) - 1 / th +
2 / (mu + th) - (y + th) / (mu + th) ** 2))
t0 = n / np.sum(weights * (y / mu - 1) ** 2)
iteration_idx = 0
diff = 1
MAX_ITERATIONS = 25
MAX_DIFF = 0.0001220703125
if t0 < MAX_DIFF:
t0 = 10 * MAX_DIFF
while iteration_idx < MAX_ITERATIONS - 1 and abs(diff) > MAX_DIFF:
iteration_idx += 1
t0 = abs(t0)
diff = score(t0, mu, y, weights) / info(t0, mu, y, weights)
t0 = t0 + diff
if t0 <= 0 or math.isnan(t0):
echo('Warning: Negative binomial delta estimated to be <= 0 or nan:' + str(t0), level=OPTIMIZATION_LOGGING_LEVEL)
import traceback
if hasattr(open_log, 'logfile'):
traceback.print_stack(file=open_log.logfile)
raise ZeroDeltaException
MAX_DELTA = 100000
if t0 > MAX_DELTA:
t0 = MAX_DELTA
return t0
def optimize_nb_R(y, x, weights):
from rpy2 import robjects as ro
import rpy2.rlike.container as rlc
from rpy2.robjects.packages import importr
ro.r['options'](warn=1)
mass = importr("MASS")
x_float_vector = [ro.FloatVector(xx) for xx in x]
y_float_vector = ro.FloatVector(y)
weights_float_vector = ro.FloatVector(weights)
names = ['v' + str(i) for i in xrange(len(x_float_vector))]
d = rlc.TaggedList(x_float_vector + [y_float_vector], names + ['y'])
data = ro.DataFrame(d)
formula = 'y ~ ' + '+ '.join(names) + ' - 1'
try:
fit_res = mass.glm_nb(formula=ro.r(formula), data=data, weights=weights_float_vector)
except:
return NegBinomialOptimizationFailure
return fit_res.rx2('theta')[0], list(fit_res.rx2('coefficients'))