-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGesture.py
84 lines (71 loc) · 3.32 KB
/
Gesture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import cv2
import mediapipe as mp
import math
from ctypes import cast, POINTER
from comtypes import CLSCTX_ALL
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume
# Function to calculate distance between two points
def calculate_distance(point1, point2):
return math.sqrt((point2.x - point1.x)**2 + (point2.y - point1.y)**2)
# Function to calculate volume level based on number of fingers
def calculate_volume_level(num_fingers):
# Calculate the volume level based on the number of fingers extended
return min(20 * num_fingers, 100) # Maximum volume is capped at 100
# MediaPipe hand detection initialization
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(static_image_mode=False, max_num_hands=2, min_detection_confidence=0.7, min_tracking_confidence=0.7)
mp_drawing = mp.solutions.drawing_utils
# OpenCV camera initialization
cap = cv2.VideoCapture(0)
# Function to set system volume
def set_system_volume(volume):
devices = AudioUtilities.GetSpeakers()
interface = devices.Activate(
IAudioEndpointVolume._iid_, CLSCTX_ALL, None)
volume_object = cast(interface, POINTER(IAudioEndpointVolume))
volume_object.SetMasterVolumeLevelScalar(volume / 100, None)
prev_num_fingers = 0
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
# Process the image with MediaPipe Hands.
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
num_fingers = 0
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
# Extract landmarks for fingers
thumb_tip = hand_landmarks.landmark[mp_hands.HandLandmark.THUMB_TIP]
index_tip = hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP]
middle_tip = hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP]
ring_tip = hand_landmarks.landmark[mp_hands.HandLandmark.RING_FINGER_TIP]
pinky_tip = hand_landmarks.landmark[mp_hands.HandLandmark.PINKY_TIP]
# Calculate distances between finger tips and base
thumb_to_index = calculate_distance(thumb_tip, index_tip)
index_to_middle = calculate_distance(index_tip, middle_tip)
middle_to_ring = calculate_distance(middle_tip, ring_tip)
ring_to_pinky = calculate_distance(ring_tip, pinky_tip)
# Count the number of extended fingers for this hand
num_fingers += sum([1 for d in [thumb_to_index, index_to_middle, middle_to_ring, ring_to_pinky] if d > 0.05])
if num_fingers != prev_num_fingers:
if num_fingers > 0:
# Adjust system volume to 20 when fingers are extended
set_system_volume(20)
prev_num_fingers = num_fingers
# Show the image with OpenCV
cv2.imshow('Hand Tracking', image)
if cv2.waitKey(5) & 0xFF == 27:
break
hands.close()
cap.release()
cv2.destroyAllWindows()