-
-
Notifications
You must be signed in to change notification settings - Fork 158
/
Copy pathsubmission.py
119 lines (98 loc) · 3.12 KB
/
submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from __future__ import print_function
import numpy as np
import cv2
from data import image_cols, image_rows
import matplotlib.pyplot as plt
import numpy as np
import re
from scipy import linalg
import scipy.ndimage as ndi
from six.moves import range
import os
import threading
from PIL import Image, ImageOps, ImageEnhance
from skimage.transform import rotate, resize
from skimage import data
def prep(img):
img = img.astype('float32')
img = cv2.threshold(img, 0.5, 1., cv2.THRESH_BINARY)[1].astype(np.uint8)
img = cv2.resize(img, (image_cols, image_rows))
return img
def run_length_enc(label):
from itertools import chain
x = label.transpose().flatten()
y = np.where(x > 0)[0]
if len(y) < 10: # consider as empty
return ''
z = np.where(np.diff(y) > 1)[0]
start = np.insert(y[z+1], 0, y[0])
end = np.append(y[z], y[-1])
length = end - start
res = [[s+1, l+1] for s, l in zip(list(start), list(length))]
res = list(chain.from_iterable(res))
return ' '.join([str(r) for r in res])
def augmentation(image, org_width=160,org_height=224, width=190, height=262):
max_angle=20
image=resize(image,(width,height))
angle=np.random.randint(max_angle)
if np.random.randint(2):
angle=-angle
image=rotate(image,angle,resize=True)
xstart=np.random.randint(width-org_width)
ystart=np.random.randint(height-org_height)
image=image[xstart:xstart+org_width,ystart:ystart+org_height]
if np.random.randint(2):
image=cv2.flip(image,1)
if np.random.randint(2):
image=cv2.flip(image,0)
# image=resize(image,(org_width,org_height))
print(image.shape)
plt.imshow(image)
plt.show()
def visualize():
from data import load_train_data
imgs_train, imgs_train_mask = load_train_data()
imgs_train_pred=np.load('imgs_train_pred.npy')
total=imgs_train.shape[0]
for i in range(total):
# augmentation(imgs_train[i,0])
plt.subplot(221)
plt.imshow(imgs_train[i,0])
plt.subplot(222)
plt.imshow(imgs_train_mask[i,0])
plt.subplot(223)
plt.imshow(imgs_train_pred[i,0])
img = prep(imgs_train_pred[i,0])
plt.subplot(224)
plt.imshow(img)
plt.show()
def submission():
from data import load_test_data
imgs_test, imgs_id_test = load_test_data()
imgs_test = np.load('imgs_mask_test.npy')
argsort = np.argsort(imgs_id_test)
imgs_id_test = imgs_id_test[argsort]
imgs_test = imgs_test[argsort]
total = imgs_test.shape[0]
ids = []
rles = []
for i in range(total):
img = imgs_test[i, 0]
img = prep(img)
rle = run_length_enc(img)
rles.append(rle)
ids.append(imgs_id_test[i])
if i % 100 == 0:
print('{}/{}'.format(i, total))
first_row = 'img,pixels'
file_name = 'submission.csv'
with open(file_name, 'w+') as f:
f.write(first_row + '\n')
for i in range(total):
s = str(ids[i]) + ',' + rles[i]
f.write(s + '\n')
if __name__ == '__main__':
# submission()
visualize()
# while True:
# augmentation()