-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCompare_run.m
211 lines (182 loc) · 6.34 KB
/
Compare_run.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
%% Sim Run Compare Real
clear
close all
%% Script to Run the Sim
sc = init_sc();
sc = body_inertia_func(sc);
Rot = sc.R;
I_vec = [sc.Ip(1,1); sc.Ip(2,2); sc.Ip(3,3)];
Ix_sat = I_vec(1);
Iy_sat = I_vec(2);
Iz_sat = I_vec(3);
% Convert sc struct to arrays
subsections = {'rect';'base';'fuel';'sp1';'sp2'};
count = 1;
for subsect = subsections'
faces = fieldnames(sc.(subsect{1}));
for face = faces'
areas(count) = sc.(subsect{1}).(face{1}).area;
bcs(count,:) = sc.(subsect{1}).(face{1}).bc;
normals(count,:) = sc.R * sc.(subsect{1}).(face{1}).normal;
count = count+1;
end
end
constants % access constants (mu, distance to earth, etc.)
omega = (sqrt((mu.earth + mu.moon + mu.sun)/dis.sun^3));
mu1 = 328900.56^-1; % From NASA
r0 = [.98900883730044109; 0; 0.000802140914099732]*dis.sun;
v0 = [0; 0.010697471710460349-2.895683e-3; 0] * dis.sun * omega;
% w0 = [3; 2; 2.5] * pi()/180; % initial angular velocity
% w0 = [omega/100 ; omega; omega/100];
w0 = [1; 1; 1]*pi/180;
% DCM =[.892539 .157379 -.422618; -.275451 0.932257 -.234570; .357073 0.325773 .875426];
% DCM = sc.R'*[-1 0 0; 0 -1 0; 0 0 1];
DCM = sc.R'*[-1 0 0; 0 -1 0; 0 0 1];
% DCM = [0.999999671094767 0 -8.110550887097017e-04; 0 1 0; 8.110550887097016e-04 0 0.999999671094768];
% Using this as a switch case parameter
% 0 = deterministic att det
% 1 = q method
% 2 = angular velocity and kinematic equations
att_det_method = 1;
q0 = DCM_to_quat(DCM);
acc_gyro_bias = 0.5 * pi/180 / 60 / 60; % 0.003 to 1 deg/hr (SMAD) - will need to make this bigger to see any change
acc_gyro = 0.01 * pi/180 / 60 / 60;
sun_err_bias = 1 * pi/180; % 0.005 to 3 deg, sun sensor error (SMAD)
sun_err_var = 0.01 * pi/180;
star_err_bias = 0.001 * pi/180; % 0.0003 to 0.01 deg, star tracker error (SMAD)
star_err_var = 0.0005 * pi/180;
% sun_err_var = 1 * pi/180;
% acc_gyro = 1 * pi/180 / 60 / 60;
% star_err_var = 1 * pi/180;
%% Generate Random Noise and Run Sim
end_time = 2000;
dt = .25;
dt_EKF = .25;
dt_UKF = 100;
% num_noise = ceil(end_time / 10);
num_noise = 1000;
sun_noise = mvnrnd(zeros(num_noise, 3), sun_err_var*eye(3))';
star_noise = mvnrnd(zeros(num_noise, 3), star_err_var*eye(3))';
gyro_noise = mvnrnd(zeros(num_noise, 3), acc_gyro* eye(3))';
%% Control Constants
% kp = 0.1 ^ 2 / Iy_sat;
% kd = 2 * sqrt(Iy_sat * (1e-6 + kp));
%% Actuator Model
% 3 RW with x,y,z + 1 RW with trisectrix
Astar_RW = [5/6 -1/6 -1/6;-1/6 5/6 -1/6;-1/6 -1/6 5/6;sqrt(3)/6 sqrt(3)/6 sqrt(3)/6];
A_RW = [1 0 0 1/sqrt(3);0 1 0 1/sqrt(3);0 0 1 1/sqrt(3)];
I_w = 2*eye(4); % Reaction wheels moments of inertia
RW_err = 0.0001;
RW_noise = mvnrnd(zeros(num_noise, 4), RW_err* eye(4))';
% lambda_poss = [2 : .01 : 3];
%% Running the Sim(s)
lambda_poss = 2.92; % from iterating through
err_mean = zeros(length(lambda_poss),1);
clearing_vars = who;
% save('work_space_before')
for ii = 1:length(lambda_poss)
lambda = lambda_poss(ii);
tic
sim('SOHO_sim_UKF.slx')
toc
q_out_UKF = q_out;
% clearvars -except q_out_UKF mu_p_UKF mu_UKF
% save('UKF_results')
% clear
% save('UKF_results')
% disp(lambda)
% mu_UKF(:, 1:4) = quat_corr(mu_UKF(:,1:4));
% [q] = quat_corr(q_out(1:dt_UKF/dt:end, 1:4));
% q = [q q_out(1:dt_UKF/dt:end, 5:7)];
% err_temp = zeros(size(mu_UKF,1),1);
% for jj = 1:size(mu_UKF, 1)
% err_temp(jj) = norm(mu_UKF(jj, :) - q(jj, :));
% err_mean(ii) = mean(err_temp);
% end
end
% clear all
% load('work_space_before')
% figure()
% plot(lambda_poss, err_mean)
% hold on
% xlabel('lambda for UKF')
% ylabel('Mean Error to Ground Trurth')
% title('Mean Error vs. Lambda Parameter for UKF')
% hold off
clearvars -except q_out_UKF mu_UKF mu_p_UKF
save('UKF_results')
clear
close all
%% Script to Run the Sim
sc = init_sc();
sc = body_inertia_func(sc);
Rot = sc.R;
I_vec = [sc.Ip(1,1); sc.Ip(2,2); sc.Ip(3,3)];
Ix_sat = I_vec(1);
Iy_sat = I_vec(2);
Iz_sat = I_vec(3);
% Convert sc struct to arrays
subsections = {'rect';'base';'fuel';'sp1';'sp2'};
count = 1;
for subsect = subsections'
faces = fieldnames(sc.(subsect{1}));
for face = faces'
areas(count) = sc.(subsect{1}).(face{1}).area;
bcs(count,:) = sc.(subsect{1}).(face{1}).bc;
normals(count,:) = sc.R * sc.(subsect{1}).(face{1}).normal;
count = count+1;
end
end
constants % access constants (mu, distance to earth, etc.)
omega = (sqrt((mu.earth + mu.moon + mu.sun)/dis.sun^3));
mu1 = 328900.56^-1; % From NASA
r0 = [.98900883730044109; 0; 0.000802140914099732]*dis.sun;
v0 = [0; 0.010697471710460349-2.895683e-3; 0] * dis.sun * omega;
% w0 = [3; 2; 2.5] * pi()/180; % initial angular velocity
% w0 = [omega/100 ; omega; omega/100];
w0 = [1; 1; 1]*pi/180;
% DCM =[.892539 .157379 -.422618; -.275451 0.932257 -.234570; .357073 0.325773 .875426];
% DCM = sc.R'*[-1 0 0; 0 -1 0; 0 0 1];
DCM = sc.R'*[-1 0 0; 0 -1 0; 0 0 1];
% DCM = [0.999999671094767 0 -8.110550887097017e-04; 0 1 0; 8.110550887097016e-04 0 0.999999671094768];
% Using this as a switch case parameter
% 0 = deterministic att det
% 1 = q method
% 2 = angular velocity and kinematic equations
att_det_method = 1;
q0 = DCM_to_quat(DCM);
acc_gyro_bias = 0.5 * pi/180 / 60 / 60; % 0.003 to 1 deg/hr (SMAD) - will need to make this bigger to see any change
acc_gyro = 0.01 * pi/180 / 60 / 60;
sun_err_bias = 1 * pi/180; % 0.005 to 3 deg, sun sensor error (SMAD)
sun_err_var = 0.01 * pi/180;
star_err_bias = 0.001 * pi/180; % 0.0003 to 0.01 deg, star tracker error (SMAD)
star_err_var = 0.0005 * pi/180;
% sun_err_var = 1 * pi/180;
% acc_gyro = 1 * pi/180 / 60 / 60;
% star_err_var = 1 * pi/180;
%% Generate Random Noise and Run Sim
end_time = 2000;
dt = .25;
dt_EKF = 1;
% % dt_UKF = 100;
% num_noise = ceil(end_time / 10);
num_noise = 1000;
sun_noise = mvnrnd(zeros(num_noise, 3), sun_err_var*eye(3))';
star_noise = mvnrnd(zeros(num_noise, 3), star_err_var*eye(3))';
gyro_noise = mvnrnd(zeros(num_noise, 3), acc_gyro* eye(3))';
%% Control Constants
% kp = 0.1 ^ 2 / Iy_sat;
% kd = 2 * sqrt(Iy_sat * (1e-6 + kp));
%% Actuator Model
% 3 RW with x,y,z + 1 RW with trisectrix
Astar_RW = [5/6 -1/6 -1/6;-1/6 5/6 -1/6;-1/6 -1/6 5/6;sqrt(3)/6 sqrt(3)/6 sqrt(3)/6];
A_RW = [1 0 0 1/sqrt(3);0 1 0 1/sqrt(3);0 0 1 1/sqrt(3)];
I_w = 2*eye(4); % Reaction wheels moments of inertia
RW_err = 0.0001;
RW_noise = mvnrnd(zeros(num_noise, 4), RW_err* eye(4))';
% lambda_poss = [2 : .01 : 3];
%% Running the Sim(s)
tic
sim('SOHO_sim_EKF.slx')
toc
q_out_EKF = q_out;