-
Notifications
You must be signed in to change notification settings - Fork 5
/
01_big_o_notation.jl
192 lines (155 loc) · 5.06 KB
/
01_big_o_notation.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
function matrix_product(A,B)
@assert size(A,2) == size(B,1)
# `@assert condition` does nothing if `condition` is `true`, and throws an
# error otherwise.
C = zeros(size(A,1),size(B,2))
for i = 1:size(A,1)
for j = 1:size(B,2)
for k = 1:size(A,2)
C[i,j] += A[i,k]*B[k,j]
end
end
end
return C
end
function matrix_product()
n = 1_000
A = zeros(n,n)
B = zeros(n,n)
println(" Naive matrix product: ", @elapsed(matrix_product(A,B)), " seconds")
println("Export matrix product: ", @elapsed(A*B), " seconds")
end
function sum_ij(A)
s = 0.0
for i = 1:size(A,1)
for j = 1:size(A,2)
s += A[i,j]
end
end
return s
end
function sum_ji(A)
s = 0.0
for j = 1:size(A,2)
for i = 1:size(A,1)
s += A[i,j]
end
end
return s
end
function matrix_sum()
n = 10_000
A = zeros(n,n)
println("Summing over columns first: ", @elapsed(sum_ji(A)), " seconds")
println(" Summing over rows first: ", @elapsed(sum_ij(A)), " seconds")
end
function sum_if(x,y)
s = 0.0
for i = 1:length(x)
if x[i]
s += y[i]
end
end
return s
end
function branch_prediction()
# Based on https://stackoverflow.com/q/11227809
n = 10_000_000
x_rand = rand(Bool,n)
x_sort = sort(x_rand)
y = rand(n)
println("Conditional sum with random input: ", @elapsed(sum_if(x_rand,y)), " seconds")
println("Conditional sum with sorted input: ", @elapsed(sum_if(x_sort,y)), " seconds")
# `sum_if(x,y)` is much faster if `x` is sorted because branch prediction
# is easier if `x` is of the form `x = [0,0, ..., 0,0,1,1, ... 1,1]`
end
using BenchmarkTools
# Defines the `@belapsed()` macro which estimates the runtime of very short
# operations more accurately by running the operation several times.
function preasymptotic()
x = zeros(32)
println("Summing ", length(x)," numbers: ", 1e9*@belapsed(sum($x)), " nanoseconds")
x = zeros(64)
println("Summing ", length(x)," numbers: ", 1e9*@belapsed(sum($x)), " nanoseconds")
end
#=
Example output:
Summing 32 numbers: 13.683049147442327 nanoseconds
Summing 64 numbers: 16.608040201005025 nanoseconds
Twice the amount of computations in same amount of time!
=#
function asymptotic()
x = zeros(1024)
println("Summing ", length(x)," numbers: ", 1e9*@belapsed(sum($x)), " nanoseconds")
x = zeros(2048)
println("Summing ", length(x)," numbers: ", 1e9*@belapsed(sum($x)), " nanoseconds")
x = zeros(4096)
println("Summing ", length(x)," numbers: ", 1e9*@belapsed(sum($x)), " nanoseconds")
end
#=
Example output:
Summing 1024 numbers: 77.34751037344398 nanoseconds
Summing 2048 numbers: 162.4756258234519 nanoseconds
Summing 4096 numbers: 325.6359649122807 nanoseconds
No
twice the number of operations => twice the runtime.
=#
using PyPlot
function algebraic_scaling()
f = x -> (2 + sin(x))*sqrt(x)
# `x -> ...` defines an anonymous function with a single argument.
# In Matlab, the equivalent syntax is `@(x) ...`.
# In Python, the equivalent syntax is `lambda x: ...`.
clf()
if true
# Bad: Plot `f(x)` using linear axes.
# Linear axes do not allow us to reliably distinguish between, say,
# `O(x^(1/2))`, `O(x^(1/3))` or even `O(log(x))`.
x = LinRange(1,100,1000)
plot(x, f.(x), label=L"f(x)") # `f.(x)` applies `f` to every element of `x`.
else
# Good: Plot `f(x)` using doubly logarithmic axes
# `f(x)` is then upper-bounded by a straight line whose slope indicates
# the power `p` in `f(x) = O(x^p)`.
x = 10.0.^LinRange(0,3,10000)
loglog(x, f.(x), label=L"f(x)")
loglog(x, 4e0.*sqrt.(x), "k--", label=L"O(\sqrt{x})")
end
xlabel(L"x") # `L"[maths]"` is like writing `$[maths]` in LaTeX
legend()
display(gcf())
end
function exponential_scaling()
f = x -> (2 + sin(x))*exp(x)
clf()
if true
# Bad: Plot `f(x)` using linear axes.
# Linear axes do not allow us to reliably distinguish between, say,
# `O(x^2)` or `O(exp(x))`.
x = LinRange(1,5,1000)
plot(x, f.(x), label=L"f(x)")
else
# Good: Plot `f(x)` using a linear x-axis and a logarithmic y-axis.
# `f(x)` is then upper-bounded by a straight line whose slope indicates
# the base `a` in `f(x) = O(a^x)`.
x = LinRange(1,100,1000)
semilogy(x, f.(x), label=L"f(x")
semilogy(x, 1e2.*exp.(x), "k--", label=L"O(\exp(x))")
end
xlabel(L"x")
legend()
display(gcf())
end
function machine_precision()
# Compute Euler's number using the series expansion of `exp(x)`.
exp_sum = n -> Float64(sum(1/factorial(big(k)) for k = 0:n))
# Plot the convergence
n = 1:30
clf()
semilogy(n, abs.(exp(1) .- exp_sum.(n)), "o-", label=L"\mathrm{error}(n)")
semilogy(n[[1,end]], eps().*[1,1], "k--", label=L"\mathrm{eps}()")
xlabel(L"n")
legend()
display(gcf())
# Note how the error stagnates at roughly eps() == 2e-16.
end