-
Notifications
You must be signed in to change notification settings - Fork 5
/
tutorial_06_explicit_runge_kutta_solution.jl
99 lines (84 loc) · 1.83 KB
/
tutorial_06_explicit_runge_kutta_solution.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
using PyPlot
#############
# Exercise 1
function euler_step(f,y0,t)
return y0 + f(y0)*t
end
function propagate(f,y0,T,n,step)
y = Vector{typeof(y0)}(undef,n)
y[1] = y0
for i = 2:n
y[i] = step(f,y[i-1],T/(n-1))
end
return y
end
function cannonball_f(y,D,g)
x1,x2,v1,v2 = y
v = sqrt(v1^2 + v2^2)
return [ v1, v2, -D*v*v1, -D*v*v2-g ]
end
function cannonball_trajectory()
# Physical parameters
D = 5.0
g = 1.0
y0 = Float64[0,0,1,2]
T = 2.0
# Numerical parameters
n = 100
step = euler_step
# Solve the ODE
y = propagate(
y->cannonball_f(y,D,g),
y0, T, n, step
)
x1 = [y[i][1] for i = 1:length(y)]
x2 = [y[i][2] for i = 1:length(y)]
v1 = [y[i][3] for i = 1:length(y)]
v2 = [y[i][4] for i = 1:length(y)]
# Plot the solution
clf()
plot(x1,x2)
axis("equal")
xlabel(L"x_1")
ylabel(L"x_2")
display(gcf())
end
#############
# Exercise 2
function midpoint_step(f,y0,t)
f0 = f(y0)
f1 = f(y0+f0*t/2)
return y0 + f1*t
end
function ssprk3_step(f,y0,t)
f0 = f(y0)
f1 = f(y0+f0*t)
f2 = f(y0+f0*t/4+f1*t/4)
return y0 + f0*t/6 + f1*t/6 + f2*2t/3
end
function convergence()
f = y->y^2
y0 = 1.0
T = 0.5
y = t-> y0/(1-y0*t)
clf()
n = round.(Int, 10.0.^LinRange(0,3,30))
for (name,step) in (
("Euler", euler_step),
("midpoint", midpoint_step),
("SSPRK3", ssprk3_step),
)
error = [begin
ỹ = propagate(f,y0,T,n, step)
abs(y(T) - ỹ[end])
end for n in n]
loglog(n, error, label=name)
end
loglog(n, inv.(n), "k--")
loglog(n, inv.(n).^2, "k-.")
loglog(n, inv.(n).^3, "k:")
legend(loc="best")
xlabel("Number of time steps")
ylabel(L"Error at final time")
display(gcf())
end