-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtutorial_09_sampling_theorems.jl
97 lines (82 loc) · 2.13 KB
/
tutorial_09_sampling_theorems.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
using PyPlot
using Statistics
using Printf
using BenchmarkTools
sin_pdf(x) = π/2*sin(π*x)
quad_pdf(x) = 6*x*(1-x)
rand_sin(n) = [rand_sin() for i = 1:n]
function rand_sin()
# TODO: Your code here!
return NaN
end
rand_quad(n) = [rand_quad() for i = 1:n]
function rand_quad()
# TODO: Your code here!
return NaN
end
function plot_pdfs()
x = LinRange(0,1,1000)
clf()
plot(x, quad_pdf.(x), label=L"p(x)")
plot(x, sin_pdf.(x), label=L"q(x)")
xlabel("x")
legend()
display(gcf())
end
function plot_pdf_ratio()
x = LinRange(0,1,1000)[2:end-1]
clf()
plot(x, quad_pdf.(x)./sin_pdf.(x), label=L"p(x) / q(x)")
xlabel("x")
legend()
display(gcf())
end
function histogram(rand_fun)
n = 1_000_000
if rand_fun == rand_sin
pdf = sin_pdf
elseif rand_fun == rand_quad
pdf = quad_pdf
else
error("Invalid argument rand_fun = $rand_fun")
end
clf()
hist(rand_fun(n); bins = 100, density = true, label="empirical PDF")
x = LinRange(0,1,1000)
plot(x, pdf.(x), "k-", label="theoretical PDF")
xlabel(L"x")
legend()
display(gcf())
end
function monte_carlo()
N = 1000
X = rand_quad(N)
Y = rand_sin(N)
println("Monte Carlo estimate for E[X]")
@printf(" Direct sampling: %.3f\n", NaN) # TODO: Your code here!
@printf(" Importance sampling: %.3f\n", NaN) # TODO: Your code here!
end
function comparison()
###########
# Variance
N = 1_000_000
X = rand_quad(N)
Y = rand_sin(N)
var_dir = var(X)
var_imp = var(Y.*quad_pdf.(Y)./sin_pdf.(Y))
println("Variance:")
@printf(" Direct sampling: %.4f\n", var_dir)
@printf(" Importance sampling: %.4f\n", var_imp)
println()
##########
# Runtime
t_dir = @belapsed(rand_quad(), seconds=0.1)
t_imp = @belapsed((Y = rand_sin(); Y * quad_pdf(Y) / sin_pdf(Y)), seconds=0.1)
println("Runtime per sample:")
@printf(" Direct sampling: %2.0f nanoseconds\n", 1e9*t_dir)
@printf(" Importance sampling: %2.0f nanoseconds\n", 1e9*t_imp)
println()
#############
# Comparison
# TODO: Your code here!
end