forked from steveicarus/iverilog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
elab_sig.cc
1359 lines (1131 loc) · 41.2 KB
/
elab_sig.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2000-2016 Stephen Williams ([email protected])
* Copyright CERN 2012 / Stephen Williams ([email protected])
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "config.h"
# include <typeinfo>
# include <cstdlib>
# include <iostream>
# include "Module.h"
# include "PClass.h"
# include "PExpr.h"
# include "PGate.h"
# include "PGenerate.h"
# include "PPackage.h"
# include "PTask.h"
# include "PWire.h"
# include "Statement.h"
# include "compiler.h"
# include "netlist.h"
# include "netmisc.h"
# include "netclass.h"
# include "netenum.h"
# include "netvector.h"
# include "netdarray.h"
# include "netparray.h"
# include "netqueue.h"
# include "util.h"
# include "ivl_assert.h"
using namespace std;
static bool get_const_argument(NetExpr*exp, verinum&res)
{
switch (exp->expr_type()) {
case IVL_VT_REAL: {
NetECReal*cv = dynamic_cast<NetECReal*>(exp);
if (cv == 0) return false;
verireal tmp = cv->value();
res = verinum(tmp.as_long());
break;
}
case IVL_VT_BOOL:
case IVL_VT_LOGIC: {
NetEConst*cv = dynamic_cast<NetEConst*>(exp);
if (cv == 0) return false;
res = cv->value();
break;
}
default:
assert(0);;
}
return true;
}
#if 0
/* This function is not currently used. */
static bool get_const_argument(NetExpr*exp, long&res)
{
verinum tmp;
bool rc = get_const_argument(exp, tmp);
if (rc == false) return false;
res = tmp.as_long();
return true;
}
#endif
void Statement::elaborate_sig(Design*, NetScope*) const
{
}
bool PScope::elaborate_sig_wires_(Design*des, NetScope*scope) const
{
bool flag = true;
for (map<perm_string,PWire*>::const_iterator wt = wires.begin()
; wt != wires.end() ; ++ wt ) {
PWire*cur = (*wt).second;
NetNet*sig = cur->elaborate_sig(des, scope);
if (sig && (sig->scope() == scope)
&& (sig->port_type() == NetNet::PREF)) {
cerr << cur->get_fileline() << ": sorry: "
<< "Reference ports not supported yet." << endl;
des->errors += 1;
}
/* If the signal is an input and is also declared as a
reg, then report an error. */
if (sig && (sig->scope() == scope)
&& (scope->type() == NetScope::MODULE)
&& (sig->port_type() == NetNet::PINPUT)
&& (sig->type() == NetNet::REG)) {
cerr << cur->get_fileline() << ": error: Port "
<< cur->basename() << " of module "
<< scope->module_name()
<< " is declared as input and as a reg type." << endl;
des->errors += 1;
}
if (sig && (sig->scope() == scope)
&& (scope->type() == NetScope::MODULE)
&& (sig->port_type() == NetNet::PINOUT)
&& (sig->type() == NetNet::REG)) {
cerr << cur->get_fileline() << ": error: Port "
<< cur->basename() << " of module "
<< scope->module_name()
<< " is declared as inout and as a reg type." << endl;
des->errors += 1;
}
if (sig && (sig->scope() == scope)
&& (scope->type() == NetScope::MODULE)
&& (sig->port_type() == NetNet::PINOUT)
&& (sig->data_type() == IVL_VT_REAL)) {
cerr << cur->get_fileline() << ": error: Port "
<< cur->basename() << " of module "
<< scope->module_name()
<< " is declared as a real inout port." << endl;
des->errors += 1;
}
}
return flag;
}
static void elaborate_sig_funcs(Design*des, NetScope*scope,
const map<perm_string,PFunction*>&funcs)
{
typedef map<perm_string,PFunction*>::const_iterator mfunc_it_t;
for (mfunc_it_t cur = funcs.begin()
; cur != funcs.end() ; ++ cur ) {
hname_t use_name ( (*cur).first );
NetScope*fscope = scope->child(use_name);
if (fscope == 0) {
cerr << (*cur).second->get_fileline() << ": internal error: "
<< "Child scope for function " << (*cur).first
<< " missing in " << scope_path(scope) << "." << endl;
des->errors += 1;
continue;
}
if (debug_elaborate) {
cerr << cur->second->get_fileline() << ": elaborate_sig_funcs: "
<< "Elaborate function " << use_name
<< " in " << scope_path(fscope) << endl;
}
cur->second->elaborate_sig(des, fscope);
}
}
static void elaborate_sig_tasks(Design*des, NetScope*scope,
const map<perm_string,PTask*>&tasks)
{
typedef map<perm_string,PTask*>::const_iterator mtask_it_t;
for (mtask_it_t cur = tasks.begin()
; cur != tasks.end() ; ++ cur ) {
NetScope*tscope = scope->child( hname_t((*cur).first) );
assert(tscope);
(*cur).second->elaborate_sig(des, tscope);
}
}
static void elaborate_sig_classes(Design*des, NetScope*scope,
const map<perm_string,PClass*>&classes)
{
for (map<perm_string,PClass*>::const_iterator cur = classes.begin()
; cur != classes.end() ; ++ cur) {
netclass_t*use_class = scope->find_class(cur->second->pscope_name());
use_class->elaborate_sig(des, cur->second);
}
}
bool PPackage::elaborate_sig(Design*des, NetScope*scope) const
{
bool flag = true;
if (debug_elaborate) {
cerr << get_fileline() << ": PPackage::elaborate_sig: "
<< "Start package scope=" << scope_path(scope) << endl;
}
flag = elaborate_sig_wires_(des, scope) && flag;
// After all the wires are elaborated, we are free to
// elaborate the ports of the tasks defined within this
// module. Run through them now.
elaborate_sig_funcs(des, scope, funcs);
elaborate_sig_tasks(des, scope, tasks);
elaborate_sig_classes(des, scope, classes);
if (debug_elaborate) {
cerr << get_fileline() << ": PPackage::elaborate_sig: "
<< "Done package scope=" << scope_path(scope)
<< ", flag=" << flag << endl;
}
return flag;
}
bool Module::elaborate_sig(Design*des, NetScope*scope) const
{
bool flag = true;
// Scan all the ports of the module, and make sure that each
// is connected to wires that have port declarations.
for (unsigned idx = 0 ; idx < ports.size() ; idx += 1) {
Module::port_t*pp = ports[idx];
if (pp == 0)
continue;
// The port has a name and an array of expressions. The
// expression are all identifiers that should reference
// wires within the scope.
map<perm_string,PWire*>::const_iterator wt;
for (unsigned cc = 0 ; cc < pp->expr.size() ; cc += 1) {
pform_name_t port_path (pp->expr[cc]->path());
// A concatenated wire of a port really should not
// have any hierarchy.
if (port_path.size() != 1) {
cerr << get_fileline() << ": internal error: "
<< "Port " << port_path << " has a funny name?"
<< endl;
des->errors += 1;
}
wt = wires.find(peek_tail_name(port_path));
if (wt == wires.end()) {
cerr << get_fileline() << ": error: "
<< "Port " << port_path << " ("
<< (idx+1) << ") of module " << mod_name()
<< " is not declared within module." << endl;
des->errors += 1;
continue;
}
if ((*wt).second->get_port_type() == NetNet::NOT_A_PORT) {
cerr << get_fileline() << ": error: "
<< "Port " << pp->expr[cc]->path() << " ("
<< (idx+1) << ") of module " << mod_name()
<< " has no direction declaration."
<< endl;
des->errors += 1;
}
}
}
flag = elaborate_sig_wires_(des, scope) && flag;
// Run through all the generate schemes to elaborate the
// signals that they hold. Note that the generate schemes hold
// the scopes that they instantiated, so we don't pass any
// scope in.
typedef list<PGenerate*>::const_iterator generate_it_t;
for (generate_it_t cur = generate_schemes.begin()
; cur != generate_schemes.end() ; ++ cur ) {
(*cur) -> elaborate_sig(des, scope);
}
// Get all the gates of the module and elaborate them by
// connecting them to the signals. The gate may be simple or
// complex. What we are looking for is gates that are modules
// that can create scopes and signals.
const list<PGate*>&gl = get_gates();
for (list<PGate*>::const_iterator gt = gl.begin()
; gt != gl.end() ; ++ gt ) {
flag &= (*gt)->elaborate_sig(des, scope);
}
// After all the wires are elaborated, we are free to
// elaborate the ports of the tasks defined within this
// module. Run through them now.
elaborate_sig_funcs(des, scope, funcs);
elaborate_sig_tasks(des, scope, tasks);
elaborate_sig_classes(des, scope, classes);
// initial and always blocks may contain begin-end and
// fork-join blocks that can introduce scopes. Therefore, I
// get to scan processes here.
typedef list<PProcess*>::const_iterator proc_it_t;
for (proc_it_t cur = behaviors.begin()
; cur != behaviors.end() ; ++ cur ) {
(*cur) -> statement() -> elaborate_sig(des, scope);
}
return flag;
}
void netclass_t::elaborate_sig(Design*des, PClass*pclass)
{
for (map<perm_string,struct class_type_t::prop_info_t>::iterator cur = pclass->type->properties.begin()
; cur != pclass->type->properties.end() ; ++ cur) {
if (! cur->second.qual.test_static())
continue;
if (debug_elaborate) {
cerr << pclass->get_fileline() << ": netclass_t::elaborate_sig: "
<< "Elaborate static property " << cur->first
<< " as signal in scope " << scope_path(class_scope_)
<< "." << endl;
}
list<netrange_t> nil_list;
ivl_type_t use_type = cur->second.type->elaborate_type(des, class_scope_);
/* NetNet*sig = */ new NetNet(class_scope_, cur->first, NetNet::REG,
nil_list, use_type);
}
for (map<perm_string,PFunction*>::iterator cur = pclass->funcs.begin()
; cur != pclass->funcs.end() ; ++ cur) {
if (debug_elaborate) {
cerr << cur->second->get_fileline() << ": netclass_t::elaborate_sig: "
<< "Elaborate signals in function method " << cur->first << endl;
}
NetScope*scope = class_scope_->child( hname_t(cur->first) );
ivl_assert(*cur->second, scope);
cur->second->elaborate_sig(des, scope);
}
for (map<perm_string,PTask*>::iterator cur = pclass->tasks.begin()
; cur != pclass->tasks.end() ; ++ cur) {
if (debug_elaborate) {
cerr << cur->second->get_fileline() << ": netclass_t::elaborate_sig: "
<< "Elaborate signals in task method " << cur->first << endl;
}
NetScope*scope = class_scope_->child( hname_t(cur->first) );
ivl_assert(*cur->second, scope);
cur->second->elaborate_sig(des, scope);
}
}
bool PGate::elaborate_sig(Design*, NetScope*) const
{
return true;
}
bool PGBuiltin::elaborate_sig(Design*, NetScope*) const
{
return true;
}
bool PGAssign::elaborate_sig(Design*, NetScope*) const
{
return true;
}
bool PGModule::elaborate_sig_mod_(Design*des, NetScope*scope,
Module*rmod) const
{
bool flag = true;
NetScope::scope_vec_t instance = scope->instance_arrays[get_name()];
for (unsigned idx = 0 ; idx < instance.size() ; idx += 1) {
// I know a priori that the elaborate_scope created the scope
// already, so just look it up as a child of the current scope.
NetScope*my_scope = instance[idx];
assert(my_scope);
if (my_scope->parent() != scope) {
cerr << get_fileline() << ": internal error: "
<< "Instance " << scope_path(my_scope)
<< " is in parent " << scope_path(my_scope->parent())
<< " instead of " << scope_path(scope)
<< endl;
}
assert(my_scope->parent() == scope);
if (! rmod->elaborate_sig(des, my_scope))
flag = false;
}
return flag;
}
// Not currently used.
#if 0
bool PGModule::elaborate_sig_udp_(Design*des, NetScope*scope, PUdp*udp) const
{
return true;
}
#endif
bool PGenerate::elaborate_sig(Design*des, NetScope*container) const
{
if (direct_nested_)
return elaborate_sig_direct_(des, container);
bool flag = true;
// Handle the special case that this is a CASE scheme. In this
// case the PGenerate itself does not have the generated
// item. Look instead for the case ITEM that has a scope
// generated for it.
if (scheme_type == PGenerate::GS_CASE) {
if (debug_elaborate)
cerr << get_fileline() << ": debug: generate case"
<< " elaborate_sig in scope "
<< scope_path(container) << "." << endl;
typedef list<PGenerate*>::const_iterator generate_it_t;
for (generate_it_t cur = generate_schemes.begin()
; cur != generate_schemes.end() ; ++ cur ) {
PGenerate*item = *cur;
if (item->direct_nested_ || !item->scope_list_.empty()) {
flag &= item->elaborate_sig(des, container);
}
}
return flag;
}
typedef list<NetScope*>::const_iterator scope_list_it_t;
for (scope_list_it_t cur = scope_list_.begin()
; cur != scope_list_.end() ; ++ cur ) {
NetScope*scope = *cur;
if (scope->parent() != container)
continue;
if (debug_elaborate)
cerr << get_fileline() << ": debug: Elaborate nets in "
<< "scope " << scope_path(*cur)
<< " in generate " << id_number << endl;
flag = elaborate_sig_(des, *cur) & flag;
}
return flag;
}
bool PGenerate::elaborate_sig_direct_(Design*des, NetScope*container) const
{
if (debug_elaborate)
cerr << get_fileline() << ": debug: "
<< "Direct nesting " << scope_name
<< " (scheme_type=" << scheme_type << ")"
<< " elaborate_sig in scope "
<< scope_path(container) << "." << endl;
// Elaborate_sig for a direct nested generated scheme knows
// that there are only sub_schemes to be elaborated. There
// should be exactly 1 active generate scheme, search for it
// using this loop.
bool flag = true;
typedef list<PGenerate*>::const_iterator generate_it_t;
for (generate_it_t cur = generate_schemes.begin()
; cur != generate_schemes.end() ; ++ cur ) {
PGenerate*item = *cur;
if (item->scheme_type == PGenerate::GS_CASE) {
for (generate_it_t icur = item->generate_schemes.begin()
; icur != item->generate_schemes.end() ; ++ icur ) {
PGenerate*case_item = *icur;
if (case_item->direct_nested_ || !case_item->scope_list_.empty()) {
flag &= case_item->elaborate_sig(des, container);
}
}
} else {
if (item->direct_nested_ || !item->scope_list_.empty()) {
// Found the item, and it is direct nested.
flag &= item->elaborate_sig(des, container);
}
}
}
return flag;
}
bool PGenerate::elaborate_sig_(Design*des, NetScope*scope) const
{
// Scan the declared PWires to elaborate the obvious signals
// in the current scope.
typedef map<perm_string,PWire*>::const_iterator wires_it_t;
for (wires_it_t wt = wires.begin()
; wt != wires.end() ; ++ wt ) {
PWire*cur = (*wt).second;
if (debug_elaborate)
cerr << get_fileline() << ": debug: Elaborate PWire "
<< cur->basename() << " in scope " << scope_path(scope) << endl;
cur->elaborate_sig(des, scope);
}
elaborate_sig_funcs(des, scope, funcs);
elaborate_sig_tasks(des, scope, tasks);
typedef list<PGenerate*>::const_iterator generate_it_t;
for (generate_it_t cur = generate_schemes.begin()
; cur != generate_schemes.end() ; ++ cur ) {
(*cur) -> elaborate_sig(des, scope);
}
typedef list<PGate*>::const_iterator pgate_list_it_t;
for (pgate_list_it_t cur = gates.begin()
; cur != gates.end() ; ++ cur ) {
(*cur) ->elaborate_sig(des, scope);
}
typedef list<PProcess*>::const_iterator proc_it_t;
for (proc_it_t cur = behaviors.begin()
; cur != behaviors.end() ; ++ cur ) {
(*cur) -> statement() -> elaborate_sig(des, scope);
}
return true;
}
/*
* A function definition exists within an elaborated module. This
* matters when elaborating signals, as the ports of the function are
* created as signals/variables for each instance of the
* function. That is why PFunction has an elaborate_sig method.
*/
void PFunction::elaborate_sig(Design*des, NetScope*scope) const
{
if (scope->elab_stage() > 1)
return;
scope->set_elab_stage(2);
perm_string fname = scope->basename();
assert(scope->type() == NetScope::FUNC);
elaborate_sig_wires_(des, scope);
NetNet*ret_sig;
if (gn_system_verilog() && (fname=="new" || fname=="new@")) {
// Special case: this is a constructor, so the return
// signal is also the first argument. For example, the
// source code for the definition may be:
// function new(...);
// endfunction
// In this case, the "@" port is the synthetic "this"
// argument and we also use it as a return value at the
// same time.
ret_sig = scope->find_signal(perm_string::literal("@"));
ivl_assert(*this, ret_sig);
if (debug_elaborate)
cerr << get_fileline() << ": PFunction::elaborate_sig: "
<< "Scope " << scope_path(scope)
<< " is a CONSTRUCTOR, so use \"this\" argument"
<< " as return value." << endl;
} else {
ivl_type_t ret_type;
if (return_type_) {
if (dynamic_cast<const struct void_type_t*> (return_type_)) {
ret_type = 0;
} else {
ret_type = return_type_->elaborate_type(des, scope->parent());
ivl_assert(*this, ret_type);
}
} else {
netvector_t*tmp = new netvector_t(IVL_VT_LOGIC);
tmp->set_scalar(true);
ret_type = tmp;
}
if (ret_type) {
if (debug_elaborate) {
cerr << get_fileline() << ": PFunction::elaborate_sig: "
<< "return type: " << *ret_type << endl;
if (return_type_)
return_type_->pform_dump(cerr, 8);
}
list<netrange_t> ret_unpacked;
ret_sig = new NetNet(scope, fname, NetNet::REG, ret_unpacked, ret_type);
ret_sig->set_line(*this);
ret_sig->port_type(NetNet::POUTPUT);
} else {
ret_sig = 0;
if (debug_elaborate) {
cerr << get_fileline() << ": PFunction::elaborate_sig: "
<< "Detected that function is void." << endl;
}
}
}
vector<NetNet*>ports;
vector<NetExpr*>pdef;
elaborate_sig_ports_(des, scope, ports, pdef);
NetFuncDef*def = new NetFuncDef(scope, ret_sig, ports, pdef);
if (debug_elaborate)
cerr << get_fileline() << ": PFunction::elaborate_sig: "
<< "Attach function definition " << scope_path(scope)
<< " with ret_sig width=" << (ret_sig? ret_sig->vector_width() : 0)
<< "." << endl;
scope->set_func_def(def);
// Look for further signals in the sub-statement
if (statement_)
statement_->elaborate_sig(des, scope);
}
/*
* A task definition is a scope within an elaborated module. When we
* are elaborating signals, the scopes have already been created, as
* have the reg objects that are the parameters of this task. The
* elaborate_sig method of PTask is therefore left to connect the
* signals to the ports of the NetTaskDef definition. We know for
* certain that signals exist (They are in my scope!) so the port
* binding is sure to work.
*/
void PTask::elaborate_sig(Design*des, NetScope*scope) const
{
assert(scope->type() == NetScope::TASK);
elaborate_sig_wires_(des, scope);
vector<NetNet*>ports;
vector<NetExpr*>pdefs;
elaborate_sig_ports_(des, scope, ports, pdefs);
NetTaskDef*def = new NetTaskDef(scope, ports, pdefs);
scope->set_task_def(def);
// Look for further signals in the sub-statement
if (statement_)
statement_->elaborate_sig(des, scope);
}
void PTaskFunc::elaborate_sig_ports_(Design*des, NetScope*scope,
vector<NetNet*>&ports, vector<NetExpr*>&pdefs) const
{
if (ports_ == 0) {
ports.clear();
pdefs.clear();
/* Make sure the function has at least one input
port. If it fails this test, print an error
message. Keep going so we can find more errors. */
if (scope->type()==NetScope::FUNC && !gn_system_verilog()) {
cerr << get_fileline() << ": error: "
<< "Function " << scope->basename()
<< " has no ports." << endl;
cerr << get_fileline() << ": : "
<< "Functions must have at least one input port." << endl;
des->errors += 1;
}
return;
}
ports.resize(ports_->size());
pdefs.resize(ports_->size());
for (size_t idx = 0 ; idx < ports_->size() ; idx += 1) {
perm_string port_name = ports_->at(idx).port->basename();
ports[idx] = 0;
pdefs[idx] = 0;
NetNet*tmp = scope->find_signal(port_name);
NetExpr*tmp_def = 0;
if (tmp == 0) {
cerr << get_fileline() << ": internal error: "
<< "task/function " << scope_path(scope)
<< " is missing port " << port_name << "." << endl;
scope->dump(cerr);
cerr << get_fileline() << ": Continuing..." << endl;
des->errors += 1;
continue;
}
// If the port has a default expression, elaborate
// that expression here.
if (ports_->at(idx).defe != 0) {
if (tmp->port_type() == NetNet::PINPUT) {
tmp_def = elab_and_eval(des, scope, ports_->at(idx).defe,
-1, scope->need_const_func());
if (tmp_def == 0) {
cerr << get_fileline()
<< ": error: Unable to evaluate "
<< *ports_->at(idx).defe
<< " as a port default expression." << endl;
des->errors += 1;
}
} else {
cerr << get_fileline() << ": sorry: Default arguments "
"for subroutine output or inout ports are not "
"yet supported." << endl;
des->errors += 1;
}
}
if (tmp->port_type() == NetNet::NOT_A_PORT) {
cerr << get_fileline() << ": internal error: "
<< "task/function " << scope_path(scope)
<< " port " << port_name
<< " is a port but is not a port?" << endl;
des->errors += 1;
scope->dump(cerr);
continue;
}
ports[idx] = tmp;
pdefs[idx] = tmp_def;
if (scope->type()==NetScope::FUNC && tmp->port_type()!=NetNet::PINPUT) {
cerr << tmp->get_fileline() << ": error: "
<< "Function " << scope_path(scope)
<< " port " << port_name
<< " is not an input port." << endl;
cerr << tmp->get_fileline() << ": : "
<< "Function arguments must be input ports." << endl;
des->errors += 1;
}
}
}
void PBlock::elaborate_sig(Design*des, NetScope*scope) const
{
NetScope*my_scope = scope;
if (pscope_name() != 0) {
hname_t use_name (pscope_name());
my_scope = scope->child(use_name);
if (my_scope == 0) {
cerr << get_fileline() << ": internal error: "
<< "Unable to find child scope " << pscope_name()
<< " in this context?" << endl;
des->errors += 1;
my_scope = scope;
} else {
if (debug_elaborate)
cerr << get_fileline() << ": debug: "
<< "elaborate_sig descending into "
<< scope_path(my_scope) << "." << endl;
elaborate_sig_wires_(des, my_scope);
}
}
// elaborate_sig in the statements included in the
// block. There may be named blocks in there.
for (unsigned idx = 0 ; idx < list_.size() ; idx += 1)
list_[idx] -> elaborate_sig(des, my_scope);
}
void PCase::elaborate_sig(Design*des, NetScope*scope) const
{
if (items_ == 0)
return;
for (unsigned idx = 0 ; idx < items_->count() ; idx += 1) {
if ( (*items_)[idx]->stat )
(*items_)[idx]->stat ->elaborate_sig(des,scope);
}
}
void PCondit::elaborate_sig(Design*des, NetScope*scope) const
{
if (if_)
if_->elaborate_sig(des, scope);
if (else_)
else_->elaborate_sig(des, scope);
}
void PDelayStatement::elaborate_sig(Design*des, NetScope*scope) const
{
if (statement_)
statement_->elaborate_sig(des, scope);
}
void PDoWhile::elaborate_sig(Design*des, NetScope*scope) const
{
if (statement_)
statement_->elaborate_sig(des, scope);
}
void PEventStatement::elaborate_sig(Design*des, NetScope*scope) const
{
if (statement_)
statement_->elaborate_sig(des, scope);
}
void PForeach::elaborate_sig(Design*des, NetScope*scope) const
{
if (statement_)
statement_->elaborate_sig(des, scope);
}
void PForever::elaborate_sig(Design*des, NetScope*scope) const
{
if (statement_)
statement_->elaborate_sig(des, scope);
}
void PForStatement::elaborate_sig(Design*des, NetScope*scope) const
{
if (statement_)
statement_->elaborate_sig(des, scope);
}
void PRepeat::elaborate_sig(Design*des, NetScope*scope) const
{
if (statement_)
statement_->elaborate_sig(des, scope);
}
void PWhile::elaborate_sig(Design*des, NetScope*scope) const
{
if (statement_)
statement_->elaborate_sig(des, scope);
}
static ivl_type_s*elaborate_type(Design*des, NetScope*scope,
data_type_t*pform_type)
{
if (struct_type_t*struct_type = dynamic_cast<struct_type_t*>(pform_type)) {
ivl_type_s*use_type = struct_type->elaborate_type(des, scope);
return use_type;
}
cerr << pform_type->get_fileline() << ": sorry: I don't know how to elaborate "
<< typeid(*pform_type).name() << " here." << endl;
des->errors += 1;
return 0;
}
static netparray_t* elaborate_parray_type(Design*des, NetScope*scope,
parray_type_t*data_type)
{
vector<netrange_t>packed_dimensions;
bool bad_range = evaluate_ranges(des, scope, packed_dimensions, * data_type->dims);
ivl_assert(*data_type, !bad_range);
ivl_type_s*element_type = elaborate_type(des, scope, data_type->base_type);
netparray_t*res = new netparray_t(packed_dimensions, element_type);
//res->set_line(*data_type);
return res;
}
bool test_ranges_eeq(const vector<netrange_t>&lef, const vector<netrange_t>&rig)
{
if (lef.size() != rig.size())
return false;
vector<netrange_t>::const_iterator lcur = lef.begin();
vector<netrange_t>::const_iterator rcur = rig.begin();
while (lcur != lef.end()) {
if (lcur->get_msb() != rcur->get_msb())
return false;
if (lcur->get_lsb() != rcur->get_lsb())
return false;
++ lcur;
++ rcur;
}
return true;
}
/*
* Elaborate a source wire. The "wire" is the declaration of wires,
* registers, ports and memories. The parser has already merged the
* multiple properties of a wire (i.e., "input wire"), so come the
* elaboration this creates an object in the design that represents the
* defined item.
*/
NetNet* PWire::elaborate_sig(Design*des, NetScope*scope) const
{
// This sets the vector or array dimension size that will
// cause a warning. For now, these warnings are permanently
// enabled.
const long warn_dimension_size = 1 << 30;
NetNet::Type wtype = type_;
bool is_implicit_scalar = false;
if (wtype == NetNet::IMPLICIT) {
wtype = NetNet::WIRE;
is_implicit_scalar = true;
}
if (wtype == NetNet::IMPLICIT_REG) {
wtype = NetNet::REG;
is_implicit_scalar = true;
}
unsigned wid = 1;
vector<netrange_t>packed_dimensions;
des->errors += error_cnt_;
// A signal can not have the same name as a scope object.
const NetScope *child = scope->child_byname(name_);
if (child) {
cerr << get_fileline() << ": error: signal and ";
child->print_type(cerr);
cerr << " in '" << scope->fullname()
<< "' have the same name '" << name_ << "'." << endl;
des->errors += 1;
}
// A signal can not have the same name as a genvar.
const LineInfo *genvar = scope->find_genvar(name_);
if (genvar) {
cerr << get_fileline() << ": error: signal and genvar in '"
<< scope->fullname() << "' have the same name '" << name_
<< "'." << endl;
des->errors += 1;
}
// A signal can not have the same name as a parameter. Note
// that we treat enumeration literals similar to parameters,
// so if the name matches an enumeration literal, it will be
// caught here.
const NetExpr *ex_msb, *ex_lsb;
const NetExpr *parm = scope->get_parameter(des, name_, ex_msb, ex_lsb);
if (parm) {
cerr << get_fileline() << ": error: signal and parameter in '"
<< scope->fullname() << "' have the same name '" << name_
<< "'." << endl;
des->errors += 1;
}
// A signal can not have the same name as a named event.
const NetEvent *event = scope->find_event(name_);
if (event) {
cerr << get_fileline() << ": error: signal and named event in '"
<< scope->fullname() << "' have the same name '" << name_
<< "'." << endl;
des->errors += 1;
}
if (port_set_ || net_set_) {
if (warn_implicit_dimensions
&& port_set_ && net_set_
&& net_.empty() && !port_.empty()) {
cerr << get_fileline() << ": warning: "
<< "var/net declaration of " << basename()
<< " inherits dimensions from port declaration." << endl;
}
if (warn_implicit_dimensions
&& port_set_ && net_set_
&& port_.empty() && !net_.empty()) {
cerr << get_fileline() << ": warning: "
<< "Port declaration of " << basename()
<< " inherits dimensions from var/net." << endl;
}
bool bad_range = false;
vector<netrange_t> plist, nlist;
/* If they exist get the port definition MSB and LSB */
if (port_set_ && !port_.empty()) {
if (debug_elaborate) {