diff --git a/examples/cylinderflow.py b/examples/cylinderflow.py index 0821a9e7d..18e67a936 100644 --- a/examples/cylinderflow.py +++ b/examples/cylinderflow.py @@ -119,8 +119,7 @@ def main(nelems: int = 99, domain.basis('spline', degree=(degree, degree-1), removedofs=((0,), None)), domain.basis('spline', degree=(degree-1, degree))]) @ J.T / detJ) ns.add_field(('p', 'q'), domain.basis('spline', degree=degree-1) / detJ) - ns.add_field(('t', 't0')) - ns.DuDt_i = '(u_i - u0_i) / (t - t0) + ∇_j(u_i) u_j' # material derivative + ns.add_field(('t', 'dt')) ns.σ_ij = '(∇_j(u_i) + ∇_i(u_j)) / Re - p δ_ij' ns.ω = 'ε_ij ∇_j(u_i)' ns.N = 10 * degree / elemangle # Nitsche constant based on element size = elemangle/2 @@ -134,20 +133,21 @@ def main(nelems: int = 99, sqr = domain.integral('(.5 Σ_i (u_i - uinf_i)^2 - ∇_k(u_k) p) dV' @ ns, degree=degree*2) args = System(sqr, trial='u,p').solve(constrain=cons) # set initial condition to potential flow - res = domain.integral('(v_i DuDt_i + ∇_j(v_i) σ_ij + q ∇_k(u_k)) dV' @ ns, degree=degree*3) - res += domain.boundary['inner'].integral('(nitsche_i (u_i - uwall_i) - v_i σ_ij n_j) dS' @ ns, degree=degree*2) - div = numpy.sqrt(domain.integral('∇_k(u_k)^2 dV' @ ns, degree=2)) # L2 norm of velocity divergence + res = domain.integral('v_i (u_i - u0_i) dV' @ ns, degree=degree*3) + res += domain.integral('(v_i ∇_j(u_i) u_j + ∇_j(v_i) σ_ij + q ∇_k(u_k)) dt dV' @ ns, degree=degree*3) + res += domain.boundary['inner'].integral('(nitsche_i (u_i - uwall_i) - v_i σ_ij n_j) dt dS' @ ns, degree=degree*2) + div = numpy.sqrt(function.factor(domain.integral('∇_k(u_k)^2 dV' @ ns, degree=2))) # L2 norm of velocity divergence postprocess = PostProcessor(domain, ns) steps = treelog.iter.fraction('timestep', range(round(endtime / timestep))) if endtime < float('inf') \ else treelog.iter.plain('timestep', itertools.count()) - system = System(res, trial='u,p', test='v,q') + system = System(function.factor(res), trial='u,p', test='v,q') for _ in steps: treelog.info(f'velocity divergence: {div.eval(**args):.0e}') - args = system.step(timestep=timestep, timetarget='t', historysuffix='0', arguments=args, constrain=cons, tol=1e-10) + args = system.step(timestep=timestep, timetarget='t', timesteptarget='dt', historysuffix='0', arguments=args, constrain=cons, tol=1e-10) postprocess(args) return args, numpy.sqrt(domain.integral('∇_k(u_k)^2 dV' @ ns, degree=2)) @@ -201,7 +201,7 @@ def __call__(self, args): export.plotlines_(ax, x.T, self.bezier.hull, colors='k', linewidths=.1, alpha=.5) ax.quiver(*self.xgrd.T, *ugrd.T, angles='xy', width=1e-3, headwidth=3e3, headlength=5e3, headaxislength=2e3, zorder=9, alpha=.5, pivot='tip') ax.plot(0, 0, 'k', marker=(3, 2, -args['t']*self.ns.rotation.eval()*180/numpy.pi-90), markersize=20) - self.xgrd += ugrd * (args['t'] - args['t0']) + self.xgrd += ugrd * args['dt'] self.regularize_xgrd()