From 55dff85ebe26cef3e69b3f54a2188e70f76b1a02 Mon Sep 17 00:00:00 2001 From: Gertjan van Zwieten Date: Wed, 13 Jan 2021 17:17:10 +0100 Subject: [PATCH] replace as_canonical_length by asindex, equalindex --- nutils/evaluable.py | 290 +++++++++++++++++++++++----------------- nutils/function.py | 19 +-- nutils/solver.py | 2 +- nutils/topology.py | 2 +- tests/test_evaluable.py | 77 ++++++----- 5 files changed, 222 insertions(+), 168 deletions(-) diff --git a/nutils/evaluable.py b/nutils/evaluable.py index 894bfa43f..8a3ca64e5 100644 --- a/nutils/evaluable.py +++ b/nutils/evaluable.py @@ -75,16 +75,51 @@ def asarray(arg): asarrays = types.tuple[asarray] -def as_canonical_length(value): - if isarray(value): - return value._as_canonical_length - elif numeric.isint(value): - value = int(value) # Ensure this is an `int`, not `numpy.int64`. - else: - raise ValueError('length should be an `int` or `Array` with zero dimensions and dtype `int`, got {!r}'.format(value)) - return value +def asindex(arg): + arg = asarray(arg) + if arg.ndim or arg.dtype not in (int, bool): # NOTE: bool to be removed after introduction of Cast + raise ValueError('argument is not an index: {}'.format(arg)) + return arg + +@types.apply_annotations +def equalindex(n:asindex, m:asindex): + '''Compare two array indices. + + Returns `True` if the two indices are certainly equal, `False` if they are + certainly not equal, or `None` if equality cannot be determined at compile + time. + ''' + + if n is m: + return True + n = n.simplified + m = m.simplified + if n is m: + return True + if n.arguments != m.arguments: + return False + if n.isconstant: # implies m.isconstant + return int(n) == int(m) + +asshape = types.tuple[asindex] + +@types.apply_annotations +def equalshape(N:asshape, M:asshape): + '''Compare two array shapes. + + Returns `True` if all indices are certainly equal, `False` if any indices are + certainly not equal, or `None` if equality cannot be determined at compile + time. + ''' -asshape = types.tuple[as_canonical_length] + assert len(N) == len(M) + retval = True + for eq in map(equalindex, N, M): + if eq == False: + return False + if eq == None: + retval = None + return retval class ExpensiveEvaluationWarning(warnings.NutilsInefficiencyWarning): pass @@ -375,7 +410,7 @@ def simplified(obj): if isinstance(obj, Evaluable): retval = obj._simplified() if retval is not None and isinstance(obj, Array): - assert isinstance(retval, Array) and retval.shape == obj.shape, '{}._simplified resulted in shape change'.format(type(obj).__name__) + assert isinstance(retval, Array) and equalshape(retval.shape, obj.shape), '{}._simplified resulted in shape change'.format(type(obj).__name__) return retval def _simplified(self): @@ -392,7 +427,7 @@ def _optimized_for_numpy1(obj: simplified.fget): if isinstance(obj, Evaluable): retval = obj._simplified() or obj._optimized_for_numpy() if retval is not None and isinstance(obj, Array): - assert isinstance(retval, Array) and retval.shape == obj.shape, '{0}._optimized_for_numpy or {0}._simplified resulted in shape change'.format(type(obj).__name__) + assert isinstance(retval, Array) and equalshape(retval.shape, obj.shape), '{0}._optimized_for_numpy or {0}._simplified resulted in shape change'.format(type(obj).__name__) return retval def _optimized_for_numpy(self): @@ -430,7 +465,7 @@ def _combine_loop_concatenates(self, outer_exclude): # start, stop and the concatenation length) are formed by # `loop_concatenate`-ing `func.shape[-1]`. If the shape is constant, # this can be simplified to a `Range`. - data = Tuple((Tuple((lc.func, lc.start, lc.stop, asarray(lc.shape[-1]))) for lc in lcs)) + data = Tuple((Tuple((lc.func, lc.start, lc.stop, lc.shape[-1])) for lc in lcs)) # Combine `LoopConcatenate` instances in `data` excluding # `outer_exclude` and those that will be processed in a subsequent loop # (the remainder of `exclude`). The latter consists of loops that are @@ -509,10 +544,10 @@ class SparseArray(Evaluable): 'sparse array' @types.apply_annotations - def __init__(self, chunks:types.tuple[types.tuple[asarray]], shape:types.tuple[asarray], dtype:asdtype): + def __init__(self, chunks:types.tuple[asarrays], shape:asarrays, dtype:asdtype): self._shape = shape self._dtype = dtype - super().__init__(args=[Tuple(map(asarray, shape)), *map(Tuple, chunks)]) + super().__init__(args=[Tuple(shape), *map(Tuple, chunks)]) def evalf(self, shape, *chunks): length = builtins.sum(values.size for *indices, values in chunks) @@ -697,10 +732,10 @@ def swapaxes(arg, axis1, axis2): class Axis(types.Immutable): __slots__ = 'length' @types.apply_annotations - def __init__(self, length:as_canonical_length): + def __init__(self, length:asindex): self.length = length def __str__(self): - return '?' if isarray(self.length) else str(self.length) + return str(int(self.length)) if self.length.isconstant else '?' def __repr__(self): return '{}{}'.format(type(self).__name__[0].lower(), self) @@ -713,18 +748,18 @@ class Raveled(Axis): def __init__(self, shape:asshape): assert len(shape) == 2 self.shape = shape - super().__init__(as_canonical_length(shape[0] * shape[1])) + super().__init__(shape[0] * shape[1]) class Diagonal(Axis): __slots__ = () @types.apply_annotations - def __init__(self, length:as_canonical_length, marker): + def __init__(self, length:asindex, marker): super().__init__(length) class Sparse(Axis): __slots__ = 'mask' @types.apply_annotations - def __init__(self, length:as_canonical_length, mask:types.arraydata=False): + def __init__(self, length:asindex, mask:types.arraydata=False): assert mask.dtype == bool self.mask = numpy.asarray(mask) # True for indices that are certain to be filled, used to detect dense addition super().__init__(length) @@ -749,7 +784,7 @@ def _assparse(self): for *indices, values in chunks: assert len(indices) == self.ndim assert all(idx.dtype == int for idx in indices) - assert all(idx.shape == values.shape for idx in indices) + assert all(equalshape(idx.shape, values.shape) for idx in indices) elif chunks: assert len(chunks) == 1 chunk, = chunks @@ -808,7 +843,7 @@ class Array(Evaluable, metaclass=_ArrayMeta): ''' __slots__ = '_axes', 'dtype', '__index' - __cache__ = 'blocks', 'assparse', '_assparse', '_as_canonical_length' + __cache__ = 'blocks', 'assparse', '_assparse' __array_priority__ = 1. # http://stackoverflow.com/questions/7042496/numpy-coercion-problem-for-left-sided-binary-operator/7057530#7057530 @@ -1005,17 +1040,6 @@ def as_evaluable_array(self): return self - @property - def _as_canonical_length(self): - 'convert to an :class:`int` if possible' - - if self.ndim != 0 or self.dtype != int: - raise ValueError('expected an `Array` with dimension zero and dtype `int` but got {!r}'.format(self)) - value = self.simplified - if value.isconstant: - value = int(value.eval()) # Ensure this is an `int`, not `numpy.int64`. - return value - class NPoints(Array): 'The length of the points axis.' @@ -1057,13 +1081,13 @@ class Normal(Array): @types.apply_annotations def __init__(self, lgrad:asarray): - assert lgrad.ndim >= 2 and lgrad.shape[-2] == lgrad.shape[-1] + assert lgrad.ndim >= 2 and equalindex(lgrad.shape[-2], lgrad.shape[-1]) self.lgrad = lgrad super().__init__(args=[lgrad], shape=lgrad.shape[:-1], dtype=float) def evalf(self, lgrad): n = lgrad[...,-1] - if n.shape[-1] == 1: # geom is 1D + if equalindex(n.shape[-1], 1): # geom is 1D return numpy.sign(n) # orthonormalize n to G G = lgrad[...,:-1] @@ -1074,7 +1098,7 @@ def evalf(self, lgrad): return numeric.normalize(n - v3) def _derivative(self, var, seen): - if self.shape[-1] == 1: + if equalindex(self.shape[-1], 1): return zeros(self.shape + var.shape) G = self.lgrad[...,:-1] m, n = G.shape[-2:] @@ -1182,9 +1206,7 @@ class InsertAxis(Array): __slots__ = 'func', 'length' @types.apply_annotations - def __init__(self, func:asarray, length:asarray): - if length.ndim != 0 or length.dtype != int: - raise Exception('invalid length argument') + def __init__(self, func:asarray, length:asindex): self.func = func self.length = length super().__init__(args=[func, length], shape=func._axes+(Inserted(length),), dtype=func.dtype) @@ -1441,7 +1463,7 @@ def __init__(self, func:asarray): super().__init__(args=[func], shape=func.shape[:-1], dtype=int if func.dtype == bool else func.dtype) def _simplified(self): - if self.func.shape[-1] == 1: + if equalindex(self.func.shape[-1], 1): return get(self.func, self.ndim, 0) return self.func._product() @@ -1484,16 +1506,17 @@ def _derivative(self, var, seen): class LinearFrom(Array): - __slots__ = () + __slots__ = 'todims', 'fromdims' @types.apply_annotations def __init__(self, trans:types.strict[TransformChain], todims:types.strictint, fromdims:types.strictint): + self.todims = todims + self.fromdims = fromdims super().__init__(args=[trans], shape=(todims, fromdims), dtype=float) def evalf(self, chain): - todims, fromdims = self.shape - assert not chain or chain[0].todims == todims - return transform.linearfrom(chain, fromdims) + assert not chain or chain[0].todims == self.todims + return transform.linearfrom(chain, self.fromdims) class Inverse(Array): ''' @@ -1505,7 +1528,7 @@ class Inverse(Array): @types.apply_annotations def __init__(self, func:asarray): - assert func.ndim >= 2 and func.shape[-1] == func.shape[-2] + assert func.ndim >= 2 and equalindex(func.shape[-1], func.shape[-2]) self.func = func super().__init__(args=[func], shape=func.shape, dtype=float) @@ -1570,7 +1593,7 @@ class Determinant(Array): @types.apply_annotations def __init__(self, func:asarray): - assert isarray(func) and func.ndim >= 2 and func.shape[-1] == func.shape[-2] + assert isarray(func) and func.ndim >= 2 and equalindex(func.shape[-1], func.shape[-2]) self.func = func super().__init__(args=[func], shape=func.shape[:-2], dtype=_jointdtype(func.dtype, float)) @@ -1602,7 +1625,7 @@ class Multiply(Array): def __init__(self, funcs:types.frozenmultiset[asarray]): self.funcs = funcs func1, func2 = funcs - assert func1.shape == func2.shape + assert equalshape(func1.shape, func2.shape) axes = [axis1 if axis1 == axis2 else axis1 if isinstance(axis1, Sparse) else axis2 if isinstance(axis2, Sparse) @@ -1658,7 +1681,7 @@ def evalf(self, arr1, arr2): def _sum(self, axis): func1, func2 = self.funcs - if self.shape[axis] == 1: + if equalindex(self.shape[axis], 1): return multiply(get(func1, axis, 0), get(func2, axis, 0)) if isinstance(func1._axes[axis], Inserted): return multiply(func1._uninsert(axis), func2.sum(axis)) @@ -1678,7 +1701,7 @@ def _add(self, other): def _determinant(self, axis1, axis2): func1, func2 = self.funcs axis1, axis2 = sorted([axis1, axis2]) - if self.shape[axis1] == self.shape[axis2] == 1: + if equalindex(self.shape[axis1], 1) and equalindex(self.shape[axis2], 1): return Multiply([determinant(func1, (axis1, axis2)), determinant(func2, (axis1, axis2))]) if all(isinstance(func1._axes[axis], Inserted) for axis in (axis1, axis2)): return Multiply([func1._uninsert(axis2)._uninsert(axis1)**self.shape[axis1], determinant(func2, (axis1, axis2))]) @@ -1763,7 +1786,7 @@ class Add(Array): def __init__(self, funcs:types.frozenmultiset[asarray]): self.funcs = funcs func1, func2 = funcs - assert func1.shape == func2.shape + assert equalshape(func1.shape, func2.shape) axes = [axis1 if axis1 == axis2 else Axis(axis1.length) for axis1, axis2 in zip(func1._axes, func2._axes)] sparse = [i for i, (axis1, axis2) in enumerate(zip(func1._axes, func2._axes)) if isinstance(axis1, Sparse) and isinstance(axis2, Sparse)] if len(sparse) > 1: # an addition of multiple sparse axes is always sparse @@ -1829,7 +1852,7 @@ class Einsum(Array): __slots__ = 'args', 'out_idx', 'args_idx', '_einsumfmt', '_has_summed_axes' @types.apply_annotations - def __init__(self, args:types.tuple[asarray], args_idx:types.tuple[types.tuple[types.strictint]], out_idx:types.tuple[types.strictint]): + def __init__(self, args:asarrays, args_idx:types.tuple[types.tuple[types.strictint]], out_idx:types.tuple[types.strictint]): if len(args_idx) != len(args): raise ValueError('Expected one list of indices for every argument, but got {} and {}, respectively.'.format(len(args_idx), len(args))) for iarg, (idx, arg) in enumerate(zip(args_idx, args), 1): @@ -1843,7 +1866,7 @@ def __init__(self, args:types.tuple[asarray], args_idx:types.tuple[types.tuple[t for i, length in zip(idx, arg.shape): if i not in lengths: lengths[i] = length - elif lengths[i] != length: + elif not equalindex(lengths[i], length): raise ValueError('Axes with index {} have different lengths.'.format(i)) try: shape = [lengths[i] for i in out_idx] @@ -1942,14 +1965,14 @@ class TakeDiag(Array): def __init__(self, func:asarray): if func.ndim < 2: raise Exception('takediag requires an argument of dimension >= 2') - if func.shape[-1] != func.shape[-2]: + if not equalindex(func.shape[-1], func.shape[-2]): raise Exception('takediag axes do not match') self.func = func shape = func._axes[:-2]+(Axis(func.shape[-1]),) super().__init__(args=[func], shape=shape, dtype=func.dtype) def _simplified(self): - if self.shape[-1] == 1: + if equalindex(self.shape[-1], 1): return Take(self.func, 0) return self.func._takediag(self.ndim-1, self.ndim) @@ -2052,7 +2075,7 @@ class Power(Array): @types.apply_annotations def __init__(self, func:asarray, power:asarray): - assert func.shape == power.shape + assert equalshape(func.shape, power.shape) self.func = func self.power = power dtype = float if func.dtype == power.dtype == int else _jointdtype(func.dtype, power.dtype) @@ -2123,9 +2146,10 @@ class Pointwise(Array): @types.apply_annotations def __init__(self, *args:asarrays): retval = self.evalf(*[numpy.ones((), dtype=arg.dtype) for arg in args]) - shapes = set(arg.shape for arg in args) - assert len(shapes) == 1, 'pointwise arguments have inconsistent shapes' + shape0 = args[0].shape + assert all(equalshape(arg.shape, shape0) for arg in args[1:]), 'pointwise arguments have inconsistent shapes' shape = tuple(axes[0] if len(set(axes)) == 1 and not isinstance(axes[0], Sparse) else Axis(axes[0].length) for axes in zip(*(arg._axes for arg in args))) + # TODO check shape definition self.args = args super().__init__(args=args, shape=shape, dtype=retval.dtype) @@ -2364,7 +2388,7 @@ class Eig(Evaluable): @types.apply_annotations def __init__(self, func:asarray, symmetric:bool=False): - assert func.ndim >= 2 and func.shape[-1] == func.shape[-2] + assert func.ndim >= 2 and equalindex(func.shape[-1], func.shape[-2]) self.symmetric = symmetric self.func = func self._w_dtype = float if symmetric else complex @@ -2418,7 +2442,7 @@ class Zeros(Array): @types.apply_annotations def __init__(self, shape:asshape, dtype:asdtype): - super().__init__(args=[asarray(sh) for sh in shape], shape=map(Sparse, shape), dtype=dtype) + super().__init__(args=shape, shape=map(Sparse, shape), dtype=dtype) def evalf(self, *shape): return numpy.zeros(shape, dtype=self.dtype) @@ -2474,7 +2498,7 @@ def _determinant(self, axis1, axis2): shape = list(self.shape) assert axis1 != axis2 length, = set(map(shape.pop, sorted((axis1, axis2), reverse=True))) - if length == 0: + if iszero(length): return ones(shape, self.dtype) else: return Zeros(shape, self.dtype) @@ -2489,13 +2513,13 @@ class Inflate(Array): __cache__ = '_assparse' @types.apply_annotations - def __init__(self, func:asarray, dofmap:asarray, length:asarray): - if func.shape[func.ndim-dofmap.ndim:] != dofmap.shape: + def __init__(self, func:asarray, dofmap:asarray, length:asindex): + if not equalshape(func.shape[func.ndim-dofmap.ndim:], dofmap.shape): raise Exception('invalid dofmap') self.func = func self.dofmap = dofmap self.length = length - mask = not any(isinstance(ax, Sparse) for ax in func._axes[func.ndim-dofmap.ndim:]) and dofmap.isconstant and length.isconstant and numeric.asboolean(dofmap.eval().ravel(), length.eval(), ordered=False) + mask = not any(isinstance(ax, Sparse) for ax in func._axes[func.ndim-dofmap.ndim:]) and dofmap.isconstant and length.isconstant and numeric.asboolean(dofmap.eval().ravel(), int(length), ordered=False) shape = func._axes[:-1] + (Sparse(length, mask),) self.warn = not dofmap.isconstant super().__init__(args=[func,dofmap,length], shape=func._axes[:func.ndim-dofmap.ndim]+(Sparse(length, mask),), dtype=func.dtype) @@ -2504,7 +2528,7 @@ def _simplified(self): if self.dofmap == Range(self.length): return self.func for axis in range(self.dofmap.ndim): - if self.dofmap.shape[axis] == 1: + if equalindex(self.dofmap.shape[axis], 1): return Inflate(_take(self.func, 0, self.func.ndim-self.dofmap.ndim+axis), _take(self.dofmap, 0, axis), self.length) if isinstance(self.func._axes[self.func.ndim-self.dofmap.ndim+axis], Sparse): items = [Inflate(f, _take(self.dofmap, ind, axis), self.shape[-1]) for ind, f in self.func._desparsify(self.func.ndim-self.dofmap.ndim+axis)] @@ -2643,7 +2667,7 @@ def evalf(self, inflateidx, takeidx): for j in [subinflate[k]] if uniqueinflate else numpy.equal(inflateidx.ravel(), n).nonzero()[0]: newinflate.append(i) newtake.append(j) - return numpy.array(newtake, dtype=int), numpy.array(newinflate, dtype=int), numpy.array(len(newtake)) + return numpy.array(newtake, dtype=int), numpy.array(newinflate, dtype=int), numpy.array(len(newtake), dtype=int) class Diagonalize(Array): @@ -2865,7 +2889,7 @@ def evalf(self, evalargs): raise ValueError('argument {!r} missing'.format(self._name)) else: value = numpy.asarray(value) - assert value.shape == self.shape, 'invalid argument shape: got {}, expected {}'.format(value.shape, self.shape) + assert equalshape(value.shape, self.shape) value = value.astype(self.dtype, casting='safe', copy=False) return value @@ -2919,9 +2943,9 @@ def __init__(self, func:asarray): super().__init__(args=[func], shape=func._axes[:-2]+(axisprop,), dtype=func.dtype) def _simplified(self): - if self.func.shape[-2] == 1: + if equalindex(self.func.shape[-2], 1): return get(self.func, -2, 0) - if self.func.shape[-1] == 1: + if equalindex(self.func.shape[-1], 1): return get(self.func, -1, 0) if isinstance(self._axes[-1], Sparse): return self._resparsify(self.ndim-1) @@ -2933,12 +2957,12 @@ def evalf(self, f): return f.reshape(f.shape[:-2] + (f.shape[-2]*f.shape[-1],)) def _multiply(self, other): - if isinstance(other, Ravel) and other.func.shape[-2:] == self.func.shape[-2:]: + if isinstance(other, Ravel) and equalshape(other.func.shape[-2:], self.func.shape[-2:]): return Ravel(Multiply([self.func, other.func])) return Ravel(Multiply([self.func, Unravel(other, *self.func.shape[-2:])])) def _add(self, other): - if isinstance(other, Ravel) and other.func.shape[-2:] == self.func.shape[-2:]: + if isinstance(other, Ravel) and equalshape(other.func.shape[-2:], self.func.shape[-2:]): return Ravel(Add([self.func, other.func])) def _sum(self, axis): @@ -2961,7 +2985,7 @@ def _take(self, index, axis): def _unravel(self, axis, shape): if axis != self.ndim-1: return Ravel(unravel(self.func, axis, shape)) - elif shape == self.func.shape[-2:]: + elif equalshape(shape, self.func.shape[-2:]): return self.func def _inflate(self, dofmap, length, axis): @@ -3007,18 +3031,18 @@ class Unravel(Array): __slots__ = 'func' @types.apply_annotations - def __init__(self, func:asarray, sh1:as_canonical_length, sh2:as_canonical_length): + def __init__(self, func:asarray, sh1:asindex, sh2:asindex): if func.ndim == 0: raise Exception('cannot unravel scalar function') - if func.shape[-1] != as_canonical_length(sh1 * sh2): + if not equalindex(func.shape[-1], sh1 * sh2): raise Exception('new shape does not match axis length') self.func = func - super().__init__(args=[func, asarray(sh1), asarray(sh2)], shape=func._axes[:-1]+(sh1, sh2), dtype=func.dtype) + super().__init__(args=[func, sh1, sh2], shape=func._axes[:-1]+(sh1, sh2), dtype=func.dtype) def _simplified(self): - if self.shape[-2] == 1: + if equalindex(self.shape[-2], 1): return insertaxis(self.func, self.ndim-2, 1) - if self.shape[-1] == 1: + if equalindex(self.shape[-1], 1): return insertaxis(self.func, self.ndim-1, 1) return self.func._unravel(self.ndim-2, self.shape[-2:]) @@ -3054,9 +3078,7 @@ class Range(Array): __slots__ = 'length', 'offset' @types.apply_annotations - def __init__(self, length:asarray, offset:asarray=Zeros((), int)): - assert length.ndim == 0 and length.dtype == int - assert offset.ndim == 0 and offset.dtype == int + def __init__(self, length:asindex, offset:asindex=Zeros((), int)): self.length = length self.offset = offset super().__init__(args=[length, offset], shape=[length], dtype=int) @@ -3112,9 +3134,9 @@ class Polyval(Array): def __init__(self, coeffs:asarray, points:asarray, ngrad:types.strictint=0): if points.ndim < 1: raise ValueError('argument `points` should have at least one axis') - self.points_ndim = points.shape[-1] - if not numeric.isint(self.points_ndim): + if not points.shape[-1].isconstant: raise ValueError('the last axis of argument `points` should be a constant integer') + self.points_ndim = int(points.shape[-1]) ndim = coeffs.ndim - self.points_ndim if ndim < 0: raise ValueError('argument `coeffs` should have at least one axis per spatial dimension') @@ -3165,7 +3187,11 @@ def _simplified(self): class PolyOuterProduct(Array): def __init__(self, left, right): - shape = (left.shape[0] * right.shape[0],) + (max(left.shape[1:], default=0) + max(right.shape[1:], default=0) - 1,) * (left.ndim + right.ndim - 2) + nleft = left.shape[1] + assert all(n == nleft for n in left.shape[2:]) + nright = right.shape[1] + assert all(n == nright for n in right.shape[2:]) + shape = (left.shape[0] * right.shape[0],) + (nleft + nright - 1,) * (left.ndim + right.ndim - 2) super().__init__(args=[left, right], shape=shape, dtype=float) def evalf(self, left, right): @@ -3212,12 +3238,12 @@ class Choose(Array): '''Function equivalent of :func:`numpy.choose`.''' @types.apply_annotations - def __init__(self, index:asarray, choices:types.tuple[asarray]): + def __init__(self, index:asarray, choices:asarrays): if index.dtype != int: raise Exception('index must be integer valued') dtype = _jointdtype(*[choice.dtype for choice in choices]) shape = index.shape - if not all(choice.shape == shape for choice in choices): + if not all(equalshape(choice.shape, shape) for choice in choices): raise Exception('shapes vary') self.index = index self.choices = choices @@ -3284,7 +3310,7 @@ class LoopSum(Array): def __init__(self, func: asarray, index:types.strict[Argument], length: asarray): if index.dtype != int or index.ndim != 0: raise ValueError('expected an index with dtype int and dimension zero but got {}'.format(index)) - if any(index in asarray(n).arguments for n in func.shape): + if any(index in n.arguments for n in func.shape): raise ValueError('the shape of the function must not depend on the index') if index in length.arguments: raise ValueError('the length of the loop must not depend on the index') @@ -3293,7 +3319,7 @@ def __init__(self, func: asarray, index:types.strict[Argument], length: asarray) self.index = index self.length = length - invariants = [*map(asarray, func.shape), length] + invariants = [*func.shape, length] dependencies = [] _populate_dependencies_sans_invariants(func, index, invariants, dependencies, set()) indices = {d: i for i, d in enumerate(itertools.chain(invariants, [index], dependencies))} @@ -3334,7 +3360,7 @@ def _node(self, cache, subgraph, times): loopgraph = Subgraph('Loop', subgraph) subcache[self.index] = RegularNode('LoopIndex', (), dict(length=self.length._node(cache, subgraph, times)), (type(self).__name__, _Stats()), loopgraph) subtimes = times.get(self, collections.defaultdict(_Stats)) - sum_kwargs = {'shape[{}]'.format(i): asarray(n)._node(cache, subgraph, times) for i, n in enumerate(self.shape)} + sum_kwargs = {'shape[{}]'.format(i): n._node(cache, subgraph, times) for i, n in enumerate(self.shape)} sum_kwargs['func'] = self.func._node(subcache, loopgraph, subtimes) cache[self] = node = RegularNode('LoopSum', (), sum_kwargs, (type(self).__name__, subtimes['sum']), loopgraph) return node @@ -3373,7 +3399,7 @@ def _assparse(self): *elem_indices, elem_values = (Transpose.to_end(arr, *variable) for arr in (*elem_indices, elem_values)) for i in variable[:-1]: *elem_indices, elem_values = map(Ravel, (*elem_indices, elem_values)) - assert all(numeric.isint(n) for n in elem_values.shape[:-1]) + assert all(n.isconstant for n in elem_values.shape[:-1]) chunks.append(tuple(loop_concatenate(arr, self.index, self.length) for arr in (*elem_indices, elem_values))) return tuple(chunks) @@ -3395,12 +3421,12 @@ def _simplified(self): class LoopConcatenate(Array): @types.apply_annotations - def __init__(self, func:asarray, start:asarray, stop:asarray, cc_length:asarray, index:types.strict[Argument], length:asarray): + def __init__(self, func:asarray, start:asindex, stop:asindex, cc_length:asindex, index:types.strict[Argument], length:asindex): if index.dtype != int or index.ndim != 0: raise ValueError('expected an index with dtype int and dimension zero but got {}'.format(index)) if not func.ndim: raise ValueError('expected an array with at least one axis') - if any(index in asarray(n).arguments for n in func.shape[:-1]): + if any(index in n.arguments for n in func.shape[:-1]): raise ValueError('the shape of the function must not depend on the index') if index in length.arguments: raise ValueError('the length of the loop must not depend on the index') @@ -3439,9 +3465,9 @@ def _simplified(self): elif self.index not in self.func.arguments: return Ravel(Transpose.from_end(InsertAxis(self.func, self.length), -2)) for iaxis, axis in enumerate(self.func._axes[:-1]): - if isinstance(axis, Inserted) and self.index not in asarray(axis.length).arguments: + if isinstance(axis, Inserted) and self.index not in axis.length.arguments: return insertaxis(loop_concatenate(self.func._uninsert(iaxis), self.index, self.length), iaxis, axis.length) - if isinstance(self.func._axes[-1], Inserted) and self.index not in asarray(self.func.shape[-1]).arguments and self.func.shape[-1] != 1: + if isinstance(self.func._axes[-1], Inserted) and self.index not in self.func.shape[-1].arguments and not equalindex(self.func.shape[-1], 1): return Ravel(InsertAxis(loop_concatenate(InsertAxis(self.func._uninsert(self.func.ndim-1), 1), self.index, self.length), self.func.shape[-1])) def _takediag(self, axis1, axis2): @@ -3471,12 +3497,12 @@ def _loop_concatenate_deps(self): class LoopConcatenateCombined(Evaluable): @types.apply_annotations - def __init__(self, funcdata:types.tuple[types.tuple[asarray]], index:types.strict[Argument], length:asarray): + def __init__(self, funcdata:types.tuple[asarrays], index:types.strict[Argument], length:asindex): if index.dtype != int or index.ndim != 0: raise ValueError('expected an index with dtype int and dimension zero but got {}'.format(index)) if any(not func.ndim for func, start, stop, cc_length in funcdata): raise ValueError('expected an array with at least one axis') - if any(index in n.arguments for func, start, stop, cc_length in funcdata for n in (*map(asarray, func.shape[:-1]), cc_length)): + if any(index in n.arguments for func, start, stop, cc_length in funcdata for n in (*func.shape[:-1], cc_length)): raise ValueError('the shape of the function must not depend on the index') if index in length.arguments: raise ValueError('the length of the loop must not depend on the index') @@ -3487,7 +3513,7 @@ def __init__(self, funcdata:types.tuple[types.tuple[asarray]], index:types.stric invariants = [] for func, start, stop, cc_length in funcdata: - invariants.extend(map(asarray, func.shape[:-1])) + invariants.extend(func.shape[:-1]) invariants.append(cc_length) invariants.append(length) @@ -3550,7 +3576,7 @@ def _node_tuple(self, cache, subgraph, times): subtimes = times.get(self, collections.defaultdict(_Stats)) concats = [] for func, start, stop, cc_length in zip(self._funcs, self._starts, self._stops, self._cc_lengths): - concat_kwargs = {'shape[{}]'.format(i): asarray(n)._node(cache, subgraph, times) for i, n in enumerate((*func.shape[:-1], cc_length))} + concat_kwargs = {'shape[{}]'.format(i): n._node(cache, subgraph, times) for i, n in enumerate((*func.shape[:-1], cc_length))} concat_kwargs['start'] = start._node(subcache, loopgraph, subtimes) concat_kwargs['stop'] = stop._node(subcache, loopgraph, subtimes) concat_kwargs['func'] = func._node(subcache, loopgraph, subtimes) @@ -3580,18 +3606,36 @@ def _gathersparsechunks(chunks): def _numpy_align(*arrays): '''reshape arrays according to Numpy's broadcast conventions''' + + # NOTE: this routine largely repeats the logic of equalshape to reduce the + # number of comparisons. Ultimately _numpy_align will be removed from + # evaluable so this situation is temporary. + arrays = [asarray(array) for array in arrays] if len(arrays) > 1: ndim = max([array.ndim for array in arrays]) for idim in range(ndim): - lengths = [array.shape[idim] for array in arrays if array.ndim == ndim and array.shape[idim] != 1] - length = lengths[0] if lengths else 1 - assert all(l == length for l in lengths), 'incompatible shapes: {}'.format(' != '.join(str(l) for l in lengths)) - for i, a in enumerate(arrays): - if a.ndim < ndim: - arrays[i] = insertaxis(a, idim, length) - elif a.shape[idim] != length: - arrays[i] = repeat(a, length, idim) + lengths = {} + insert = [] + for iarray, array in enumerate(arrays): + if array.ndim < ndim: + insert.append(iarray) # mark array for axis insertion + else: + lengths.setdefault(array.shape[idim], []).append(iarray) + if len(lengths) > 1: # shapes differ -> simplify to canonical form + for length in list(lengths): + simple = length.simplified + if length is not simple: + lengths.setdefault(simple, []).extend(lengths.pop(length)) + expand = () if len(lengths) == 1 \ + else lengths.pop(Constant(1), ()) # NOTE: this uses the fact that Constant(1) is simple + assert len(lengths) == 1 or all(l.isconstant for l in lengths) and len(set(map(int, lengths))) == 1, \ + 'incompatible shapes: {}'.format(' != '.join(str(l) for l in lengths)) + length, _ = lengths.popitem() + for i in insert: + arrays[i] = insertaxis(arrays[i], idim, length) + for i in expand: + arrays[i] = repeat(arrays[i], length, idim) return arrays def _inflate_scalar(arg, shape): @@ -3763,7 +3807,7 @@ def stack(args, axis=0): def repeat(arg, length, axis): arg = asarray(arg) - assert arg.shape[axis] == 1 + assert equalindex(arg.shape[axis], 1) return insertaxis(get(arg, axis, 0), axis, length) def get(arg, iax, item): @@ -3783,8 +3827,8 @@ def jacobian(geom, ndims): assert geom.ndim >= 1 J = localgradient(geom, ndims) - cndims = geom.shape[-1] - assert J.shape[-2:] == (cndims,ndims), 'wrong jacobian shape: got {}, expected {}'.format(J.shape[-2:], (cndims, ndims)) + cndims = int(geom.shape[-1]) + assert int(J.shape[-2]) == cndims and int(J.shape[-1]) == ndims, 'wrong jacobian shape: got {}, expected {}'.format((int(J.shape[-2]), int(J.shape[-1])), (cndims, ndims)) assert cndims >= ndims, 'geometry dimension < topology dimension' detJ = abs(determinant(J)) if cndims == ndims \ else ones(J.shape[:-2]) if ndims == 0 \ @@ -3819,7 +3863,7 @@ def derivative(func, var, seen=None): else: result = func._derivative(var, seen) seen[func] = result - assert result.shape == func.shape+var.shape, 'bug in {}._derivative'.format(type(func).__name__) + assert equalshape(result.shape, func.shape+var.shape), 'bug in {}._derivative'.format(type(func).__name__) return result def localgradient(arg, ndims): @@ -3851,7 +3895,7 @@ def _takeslice(arg:asarray, s:types.strict[slice], axis:types.strictint): if start == 0 and stop == n: return arg index = Range(stop-start, start) - elif numeric.isint(n): + elif n.isconstant: index = Constant(numpy.arange(*s.indices(arg.shape[axis]))) else: raise Exception('a non-unit slice requires a constant-length axis') @@ -3862,22 +3906,22 @@ def take(arg:asarray, index:asarray, axis:types.strictint): assert index.ndim == 1 length = arg.shape[axis] if index.dtype == bool: - assert index.shape[0] == length + assert equalindex(index.shape[0], length) index = Find(index) elif index.isconstant: index_ = index.eval() ineg = numpy.less(index_, 0) - if not numeric.isint(length): + if not length.isconstant: if ineg.any(): raise IndexError('negative indices only allowed for constant-length axes') elif ineg.any(): - if numpy.less(index_, -length).any(): - raise IndexError('indices out of bounds: {} < {}'.format(index_, -length)) - return _take(arg, Constant(index_ + ineg * length), axis) - elif numpy.greater_equal(index_, length).any(): - raise IndexError('indices out of bounds: {} >= {}'.format(index_, length)) + if numpy.less(index_, -int(length)).any(): + raise IndexError('indices out of bounds: {} < {}'.format(index_, -int(length))) + return _take(arg, Constant(index_ + ineg * int(length)), axis) + elif numpy.greater_equal(index_, int(length)).any(): + raise IndexError('indices out of bounds: {} >= {}'.format(index_, int(length))) elif numpy.greater(numpy.diff(index_), 0).all(): - return mask(arg, numeric.asboolean(index_, length), axis) + return mask(arg, numeric.asboolean(index_, int(length)), axis) return _take(arg, index, axis) @types.apply_annotations @@ -3886,9 +3930,9 @@ def _take(arg:asarray, index:asarray, axis:types.strictint): return Transpose.from_end(Take(Transpose.to_end(arg, axis), index), *range(axis, axis+index.ndim)) @types.apply_annotations -def _inflate(arg:asarray, dofmap:asarray, length:asarray, axis:types.strictint): +def _inflate(arg:asarray, dofmap:asarray, length:asindex, axis:types.strictint): axis = numeric.normdim(arg.ndim+1-dofmap.ndim, axis) - assert dofmap.shape == arg.shape[axis:axis+dofmap.ndim] + assert equalshape(dofmap.shape, arg.shape[axis:axis+dofmap.ndim]) return Transpose.from_end(Inflate(Transpose.to_end(arg, *range(axis, axis+dofmap.ndim)), dofmap, length), axis) def mask(arg, mask, axis=0): @@ -3931,7 +3975,7 @@ def appendaxes(func, shape): def _loop_concatenate_data(func, index, length): func = asarray(func) - chunk_size = asarray(func.shape[-1]) + chunk_size = func.shape[-1] if chunk_size.isconstant: chunk_sizes = InsertAxis(chunk_size, length) else: @@ -3939,16 +3983,16 @@ def _loop_concatenate_data(func, index, length): offsets = _SizesToOffsets(chunk_sizes) start = _take(offsets, index, 0) stop = _take(offsets, index+1, 0) - cc_length = asarray(as_canonical_length(_take(offsets, length, 0))) + cc_length = _take(offsets, length, 0) return func, start, stop, cc_length def loop_concatenate(func, index, length): - length = asarray(length) + length = asindex(length) func, start, stop, cc_length = _loop_concatenate_data(func, index, length) return LoopConcatenate(func, start, stop, cc_length, index, length) def loop_concatenate_combined(funcs, index, length): - length = asarray(length) + length = asindex(length) unique_funcs = [] unique_funcs.extend(func for func in funcs if func not in unique_funcs) unique_func_data = tuple(_loop_concatenate_data(func, index, length) for func in unique_funcs) @@ -3977,7 +4021,7 @@ def replace_arguments(value, arguments): ''' if isinstance(value, Argument) and value._name in arguments: v = asarray(arguments[value._name]) - assert value.shape == v.shape + assert equalshape(value.shape, v.shape) return v if __name__ == '__main__': diff --git a/nutils/function.py b/nutils/function.py index f0263add6..bcf1a457d 100644 --- a/nutils/function.py +++ b/nutils/function.py @@ -52,9 +52,12 @@ def lower(self, *, transform_chains: Tuple[evaluable.TransformChain] = (), coord def _lower(self, **kwargs): result = self._ArrayMeta__lower(**kwargs) assert isinstance(result, evaluable.Array) - offset = kwargs['coordinates'][0].ndim-1 if kwargs.get('coordinates', ()) else 0 + kwargs_nocoords = kwargs.copy() + coordinates = kwargs_nocoords.pop('coordinates', ()) + offset = kwargs['coordinates'][0].ndim-1 if coordinates and not type(self).__name__ == '_WithoutPoints' else 0 assert result.ndim == self.ndim + offset - assert all(m == n for m, n in zip(result.shape[offset:], self.shape) if isinstance(n, int)), 'shape mismatch' + self_shape = tuple(asarray(n).lower(**kwargs_nocoords) for n in self.shape) + assert evaluable.equalshape(result.shape[offset:], self_shape) != False, 'shape mismatch' return result class _ArrayMeta(_ArrayMeta): @@ -400,9 +403,9 @@ def derivative(self, __var: Union[str, 'Argument']) -> 'Array': if isinstance(__var, str): for arg in self.as_evaluable_array().arguments: if isinstance(arg, evaluable.Argument) and arg._name == __var: - if not all(isinstance(n, int) for n in arg.shape): + if not all(n.isconstant for n in arg.shape): raise ValueError('arguments with variable shapes are not supported') - __var = Argument(__var, arg.shape, dtype=arg.dtype) + __var = Argument(__var, tuple(map(int, arg.shape)), dtype=arg.dtype) break else: raise ValueError('no such argument: {}'.format(__var)) @@ -426,10 +429,10 @@ def argshapes(self) -> Mapping[str, Tuple[int, ...]]: if arg._name in shapes: if shapes.get(arg._name, arg.shape) != arg.shape: raise Exception('non-matching arguments shapes encountered') - elif not all(isinstance(n, int) for n in arg.shape): + elif not all(n.isconstant for n in arg.shape): raise ValueError('arguments with variable shapes are not supported') else: - shapes[arg._name] = arg.shape + shapes[arg._name] = tuple(map(int, arg.shape)) return shapes def _prepend_points(__arg: evaluable.Array, *, coordinates: Sequence[evaluable.Array] = (), **kwargs: Any) -> evaluable.Array: @@ -633,7 +636,7 @@ def __init__(self, geom: Array) -> None: def lower(self, *, coordinates: Tuple[evaluable.Array] = (), **kwargs: Any) -> evaluable.Array: assert coordinates - ndims = coordinates[0].shape[-1] + ndims = int(coordinates[0].shape[-1]) return evaluable.jacobian(self._geom.lower(coordinates=coordinates, **kwargs), ndims) class _Elemwise(Array): @@ -2607,7 +2610,7 @@ def __init__(self, ndofs: int, nelems: int, index: Array, coords: Array) -> None self._arg_dofs, self._arg_coeffs = [f.optimized_for_numpy for f in self.f_dofs_coeffs(_index)] assert self._arg_dofs.ndim == 1 assert self._arg_coeffs.ndim == 1 + coords.shape[0] - assert self._arg_dofs.shape[0] == self._arg_coeffs.shape[0] + assert evaluable.equalindex(self._arg_dofs.shape[0], self._arg_coeffs.shape[0]) self._arg_ndofs = evaluable.asarray(self._arg_dofs.shape[0]) def lower(self, **kwargs: Any) -> evaluable.Array: diff --git a/nutils/solver.py b/nutils/solver.py index 315501b75..fa7de4684 100644 --- a/nutils/solver.py +++ b/nutils/solver.py @@ -875,7 +875,7 @@ def _parse_lhs_cons(lhs0, constrain, targets, argobjs, arguments): for target in targets: if target not in argobjs: raise SolverError('target does not occur in functional: {!r}'.format(target)) - shape = argobjs[target].shape + shape = tuple(map(int, argobjs[target].shape)) if target not in arguments: arguments[target] = numpy.zeros(shape) elif arguments[target].shape != shape: diff --git a/nutils/topology.py b/nutils/topology.py index 7a3d66e3d..6264131e1 100644 --- a/nutils/topology.py +++ b/nutils/topology.py @@ -197,7 +197,7 @@ def integrate_elementwise(self, funcs, *, degree, asfunction=False, ischeme='gau retvals = [sparse.toarray(retval) for retval in self.sample(ischeme, degree).integrate_sparse( [function.kronecker(func, pos=self.f_index, length=len(self), axis=0) for func in funcs], arguments=arguments)] if asfunction: - return [function.Elemwise(retval, self.f_index, dtype=float) for retval in retvals] + return [function.get(retval, 0, self.f_index) for retval in retvals] else: return retvals diff --git a/tests/test_evaluable.py b/tests/test_evaluable.py index 0bab45695..db1e20b12 100644 --- a/tests/test_evaluable.py +++ b/tests/test_evaluable.py @@ -19,6 +19,9 @@ def setUp(self): self.pairs = [(i, j) for i in range(self.op_args.ndim-1) for j in range(i+1, self.op_args.ndim) if self.op_args.shape[i] == self.op_args.shape[j]] _builtin_warnings.simplefilter('ignore', evaluable.ExpensiveEvaluationWarning) + def assertShapes(self): + self.assertEqual(self.n_op_argsfun.shape, tuple(map(int, self.op_args.shape))) + def assertArrayAlmostEqual(self, actual, desired, decimal): if actual.shape != desired.shape: self.fail('shapes of actual {} and desired {} are incompatible.'.format(actual.shape, desired.shape)) @@ -83,7 +86,7 @@ def test_eval_withtimes(self): def test_getitem(self): for idim in range(self.op_args.ndim): - for item in range(self.op_args.shape[idim]): + for item in range(self.n_op_argsfun.shape[idim]): s = (Ellipsis,) + (slice(None),)*idim + (item,) + (slice(None),)*(self.op_args.ndim-idim-1) self.assertFunctionAlmostEqual(decimal=15, desired=self.n_op_argsfun[s], @@ -132,14 +135,14 @@ def test_determinant(self): def test_take(self): indices = [0,-1] - for iax, sh in enumerate(self.op_args.shape): + for iax, sh in enumerate(self.n_op_argsfun.shape): if sh >= 2: self.assertFunctionAlmostEqual(decimal=15, desired=numpy.take(self.n_op_argsfun, indices, axis=iax), actual=evaluable.take(self.op_args, indices, axis=iax)) def test_take_block(self): - for iax, sh in enumerate(self.op_args.shape): + for iax, sh in enumerate(self.n_op_argsfun.shape): if sh >= 2: indices = [[0,sh-1],[sh-1,0]] self.assertFunctionAlmostEqual(decimal=15, @@ -147,7 +150,7 @@ def test_take_block(self): actual=evaluable._take(self.op_args, indices, axis=iax)) def test_take_nomask(self): - for iax, sh in enumerate(self.op_args.shape): + for iax, sh in enumerate(self.n_op_argsfun.shape): if sh >= 2: indices = [0,sh-1] self.assertFunctionAlmostEqual(decimal=15, @@ -156,14 +159,14 @@ def test_take_nomask(self): def test_take_reversed(self): indices = [-1,0] - for iax, sh in enumerate(self.op_args.shape): + for iax, sh in enumerate(self.n_op_argsfun.shape): if sh >= 2: self.assertFunctionAlmostEqual(decimal=15, desired=numpy.take(self.n_op_argsfun, indices, axis=iax), actual=evaluable.take(self.op_args, indices, axis=iax)) def test_take_duplicate_indices(self): - for iax, sh in enumerate(self.op_args.shape): + for iax, sh in enumerate(self.n_op_argsfun.shape): if sh >= 2: indices = [0,sh-1,0,0] self.assertFunctionAlmostEqual(decimal=15, @@ -171,16 +174,16 @@ def test_take_duplicate_indices(self): actual=evaluable.take(self.op_args, evaluable.Guard(evaluable.asarray(indices)), axis=iax)) def test_inflate(self): - for iax, sh in enumerate(self.op_args.shape): - dofmap = evaluable.Constant(numpy.arange(sh) * 2) - desired = numpy.zeros(self.n_op_argsfun.shape[:iax] + (sh*2-1,) + self.n_op_argsfun.shape[iax+1:], dtype=self.n_op_argsfun.dtype) + for iax, sh in enumerate(self.n_op_argsfun.shape): + dofmap = evaluable.Constant(numpy.arange(int(sh)) * 2) + desired = numpy.zeros(self.n_op_argsfun.shape[:iax] + (int(sh)*2-1,) + self.n_op_argsfun.shape[iax+1:], dtype=self.n_op_argsfun.dtype) desired[(slice(None),)*iax+(slice(None,None,2),)] = self.n_op_argsfun self.assertFunctionAlmostEqual(decimal=15, desired=desired, actual=evaluable._inflate(self.op_args, dofmap=dofmap, length=sh*2-1, axis=iax)) def test_inflate_duplicate_indices(self): - for iax, sh in enumerate(self.op_args.shape): + for iax, sh in enumerate(self.n_op_argsfun.shape): dofmap = numpy.arange(sh) % 2 desired = numpy.zeros(self.n_op_argsfun.shape[:iax] + (2,) + self.n_op_argsfun.shape[iax+1:], dtype=self.n_op_argsfun.dtype) numpy.add.at(desired, (slice(None),)*iax+(dofmap,), self.n_op_argsfun) @@ -203,9 +206,9 @@ def test_product(self): def test_getslice(self): for idim in range(self.op_args.ndim): - if self.op_args.shape[idim] == 1: + if self.n_op_argsfun.shape[idim] == 1: continue - s = (Ellipsis,) + (slice(None),)*idim + (slice(0,self.op_args.shape[idim]-1),) + (slice(None),)*(self.op_args.ndim-idim-1) + s = (Ellipsis,) + (slice(None),)*idim + (slice(0,int(self.n_op_argsfun.shape[idim])-1),) + (slice(None),)*(self.op_args.ndim-idim-1) self.assertFunctionAlmostEqual(decimal=15, desired=self.n_op_argsfun[s], actual=self.op_args[s]) @@ -243,7 +246,7 @@ def test_power(self): actual=(self.op_args**3)) def test_power0(self): - power = (numpy.arange(self.op_args.size) % 2).reshape(self.op_args.shape) + power = (numpy.arange(self.n_op_argsfun.size) % 2).reshape(self.n_op_argsfun.shape) self.assertFunctionAlmostEqual(decimal=13, desired=self.n_op_argsfun**power, actual=self.op_args**power) @@ -256,11 +259,11 @@ def test_sign(self): def test_mask(self): for idim in range(self.op_args.ndim): - if self.op_args.shape[idim] <= 1: + if self.n_op_argsfun.shape[idim] <= 1: continue - mask = numpy.ones(self.op_args.shape[idim], dtype=bool) + mask = numpy.ones(self.n_op_argsfun.shape[idim], dtype=bool) mask[0] = False - if self.op_args.shape[idim] > 2: + if self.n_op_argsfun.shape[idim] > 2: mask[-1] = False self.assertFunctionAlmostEqual(decimal=15, desired=self.n_op_argsfun[(slice(None,),)*idim+(mask,)], @@ -306,7 +309,7 @@ def test_desparsify(self): args = [] for arg in self.args: for i in range(arg.ndim): - arg = evaluable._inflate(arg, evaluable.Guard(numpy.arange(arg.shape[i])), arg.shape[i], i) + arg = evaluable._inflate(arg, evaluable.Guard(numpy.arange(int(arg.shape[i]))), arg.shape[i], i) args.append(arg) op_args = self.op(*args).simplified evalargs = dict(zip(self.arg_names, self.arg_values)) @@ -444,7 +447,7 @@ def _check(name, op, n_op, shapes, hasgrad=True, zerograd=False, ndim=2, low=-1, _check('loopconcatenate2', lambda: evaluable.loop_concatenate(evaluable.Elemwise([numpy.arange(48).reshape(4,4,3)[:,:,a:b] for a, b in util.pairwise([0,2,3])], evaluable.Argument('index', (), int), int), evaluable.Argument('index', (), int), 2), lambda: numpy.arange(48).reshape(4,4,3), []) _check('loopconcatenatecombined', lambda a: evaluable.loop_concatenate_combined([a+evaluable.prependaxes(evaluable.Argument('index', (), int), a.shape)], evaluable.Argument('index', (), int), 3)[0], lambda a: a+numpy.arange(3)[None], [(2,1)], hasgrad=False) -_polyval_mask = lambda shape, ndim: 1 if ndim == 0 else numpy.array([sum(i[-ndim:]) < shape[-1] for i in numpy.ndindex(shape)], dtype=int).reshape(shape) +_polyval_mask = lambda shape, ndim: 1 if ndim == 0 else numpy.array([sum(i[-ndim:]) < int(shape[-1]) for i in numpy.ndindex(shape)], dtype=int).reshape(shape) _polyval_desired = lambda c, x: sum(c[(...,*i)]*(x[(slice(None),*[None]*(c.ndim-x.shape[1]))]**i).prod(-1) for i in itertools.product(*[range(c.shape[-1])]*x.shape[1]) if sum(i) < c.shape[-1]) _check('polyval_1d_p0', lambda c, x: evaluable.Polyval(c*_polyval_mask(c.shape,x.shape[1]), x), _polyval_desired, [(1,),(4,1)], ndim=1) _check('polyval_1d_p1', lambda c, x: evaluable.Polyval(c*_polyval_mask(c.shape,x.shape[1]), x), _polyval_desired, [(2,),(4,1)], ndim=1) @@ -594,7 +597,7 @@ def test_derivative(self): self.assertTrue(evaluable.iszero(evaluable.localgradient(self.func, self.domain.ndims).simplified)) def test_shape_derivative(self): - self.assertEqual(evaluable.localgradient(self.func, self.domain.ndims).shape, self.func.shape+(self.domain.ndims,)) + self.assertEqual(evaluable.localgradient(self.func, self.domain.ndims).shape, self.func.shape+(evaluable.Constant(self.domain.ndims),)) class jacobian(TestCase): @@ -723,21 +726,23 @@ def test_loop_concatenate(self): '└ B = Loop\n' 'NODES\n' '%B0 = LoopConcatenate\n' - '├ shape[0] = 2\n' - '├ start = %B1 = Take; i:\n' + '├ shape[0] = %A1 = Take; i:\n' '│ ├ %A2 = _SizesToOffsets; i:a3\n' '│ │ └ %A3 = InsertAxis; i:i2\n' '│ │ ├ 1\n' '│ │ └ 2\n' - '│ └ %B4 = LoopIndex\n' + '│ └ 2\n' + '├ start = %B4 = Take; i:\n' + '│ ├ %A2\n' + '│ └ %B5 = LoopIndex\n' '│ └ length = 2\n' - '├ stop = %B5 = Take; i:\n' + '├ stop = %B6 = Take; i:\n' '│ ├ %A2\n' - '│ └ %B6 = Add; i:\n' - '│ ├ %B4\n' + '│ └ %B7 = Add; i:\n' + '│ ├ %B5\n' '│ └ 1\n' - '└ func = %B7 = InsertAxis; i:i1\n' - ' ├ %B4\n' + '└ func = %B8 = InsertAxis; i:i1\n' + ' ├ %B5\n' ' └ 1\n') @unittest.skipIf(sys.version_info < (3, 6), 'test requires dicts maintaining insertion order') @@ -750,21 +755,23 @@ def test_loop_concatenatecombined(self): '└ B = Loop\n' 'NODES\n' '%B0 = LoopConcatenate\n' - '├ shape[0] = 2\n' - '├ start = %B1 = Take; i:\n' + '├ shape[0] = %A1 = Take; i:\n' '│ ├ %A2 = _SizesToOffsets; i:a3\n' '│ │ └ %A3 = InsertAxis; i:i2\n' '│ │ ├ 1\n' '│ │ └ 2\n' - '│ └ %B4 = LoopIndex\n' + '│ └ 2\n' + '├ start = %B4 = Take; i:\n' + '│ ├ %A2\n' + '│ └ %B5 = LoopIndex\n' '│ └ length = 2\n' - '├ stop = %B5 = Take; i:\n' + '├ stop = %B6 = Take; i:\n' '│ ├ %A2\n' - '│ └ %B6 = Add; i:\n' - '│ ├ %B4\n' + '│ └ %B7 = Add; i:\n' + '│ ├ %B5\n' '│ └ 1\n' - '└ func = %B7 = InsertAxis; i:i1\n' - ' ├ %B4\n' + '└ func = %B8 = InsertAxis; i:i1\n' + ' ├ %B5\n' ' └ 1\n') class simplify(TestCase):