diff --git a/nutils/__init__.py b/nutils/__init__.py index f26a95b8f..5e1fbebfb 100644 --- a/nutils/__init__.py +++ b/nutils/__init__.py @@ -1,4 +1,4 @@ 'Numerical Utilities for Finite Element Analysis' -__version__ = version = '9a18' +__version__ = version = '9a19' version_name = 'jook-sing' diff --git a/nutils/mesh.py b/nutils/mesh.py index b6237c992..06bbcf824 100644 --- a/nutils/mesh.py +++ b/nutils/mesh.py @@ -39,9 +39,18 @@ def rectilinear(richshape: Sequence[Union[int, Sequence[float]]], periodic: Sequ axes = [transformseq.DimAxis(i=0, j=n, mod=n if idim in periodic else 0, isperiodic=idim in periodic) for idim, n in enumerate(shape)] topo = topology.StructuredTopology(space, root, axes) - funcsp = topo.basis('spline', degree=1, periodic=()) - coords = numeric.meshgrid(*verts).reshape(ndims, -1) - geom = (funcsp * coords).sum(-1) + if all(map(numeric.isint, richshape)): + flat_index = topo.f_index + rev_unraveled_index = [] + for n in shape[:0:-1]: + rev_unraveled_index.append(flat_index % n) + flat_index //= n + rev_unraveled_index.append(flat_index) + geom = topo.f_coords + numpy.stack(rev_unraveled_index[::-1]) + else: + funcsp = topo.basis('spline', degree=1, periodic=()) + coords = numeric.meshgrid(*verts).reshape(ndims, -1) + geom = (funcsp * coords).sum(-1) return topo, geom @@ -52,10 +61,12 @@ def rectilinear(richshape: Sequence[Union[int, Sequence[float]]], periodic: Sequ def line(nodes: Union[int, Sequence[float]], periodic: bool = False, bnames: Optional[Tuple[str, str]] = None, *, space: str = 'X', root: Optional[TransformItem] = None) -> Tuple[Topology, function.Array]: if root is None: root = transform.Index(1, 0) + nelems = nodes if isinstance(nodes, int) else len(nodes) - 1 + domain = topology.StructuredLine(space, root, 0, nelems, periodic=periodic, bnames=bnames) if isinstance(nodes, int): - nodes = numpy.arange(nodes + 1) - domain = topology.StructuredLine(space, root, 0, len(nodes) - 1, periodic=periodic, bnames=bnames) - geom = domain.basis('std', degree=1, periodic=[]).dot(nodes) + geom = domain.f_coords[0] + domain.f_index + else: + geom = domain.basis('std', degree=1, periodic=[]).dot(nodes) return domain, geom