-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy path5_centrality.fsx
164 lines (140 loc) · 5.41 KB
/
5_centrality.fsx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
open System
open System.IO
#load "packages/FsLab/FsLab.fsx"
open FSharp.Data
open RDotNet
open RProvider
open RProvider.ggplot2
open RProvider.datasets
open RProvider.igraph
// =========================================
// Compute graph statistics
let [<Literal>] linkFile =
__SOURCE_DIRECTORY__ + "/networks/starwars-episode-1-interactions.json"
type Network = JsonProvider<linkFile>
let file = __SOURCE_DIRECTORY__ + "/networks/starwars-episode-7-interactions-allCharacters.json"
//let file = __SOURCE_DIRECTORY__ + "/networks/starwars-full-interactions-allCharacters.json"
let nodes =
Network.Load(file).Nodes
|> Seq.map (fun node -> node.Name) |> Array.ofSeq
let nodeLookup = nodes |> Array.mapi (fun i name -> i, name) |> dict
let links = Network.Load(file).Links
let mergeAnakin = true
let graph =
let edges =
links
|> Array.map (fun link ->
let n1 = nodeLookup.[link.Source]
let n2 = nodeLookup.[link.Target]
if mergeAnakin then
if n1 = "ANAKIN" then
if "DARTH VADER" < n2 then [| "DARTH VADER"; n2 |] else [| n2; "DARTH VADER" |]
elif n2 = "ANAKIN" then
if "DARTH VADER" < n1 then [| "DARTH VADER"; n1 |] else [| n1; "DARTH VADER" |]
else
[| n1; n2 |]
else
[| n1; n2 |] )
|> Array.distinct // discard with duplicated edges
|> Array.concat
namedParams["edges", box edges; "dir", box "undirected"]
|> R.graph
// Compute betweenness centrality
// Betweenness = ratio of number of shortest paths from all vertices to all
// others that pass through that node
let centrality = R.betweenness(graph)
let names = R.names(centrality).AsCharacter().ToArray()
let centralityValues = centrality.AsNumeric().ToArray()
// Compute degree centrality
// Degree centrality = number of other nodes connected to the node
let degreeCentrality = R.degree(graph)
let names' = R.names(degreeCentrality).AsCharacter().ToArray()
let degreeValues = degreeCentrality.AsNumeric().ToArray()
let top_betweenness k =
Array.zip names centralityValues
|> Array.sortByDescending snd
|> Array.take k
let top_degree k =
Array.zip names' degreeValues
|> Array.sortByDescending snd
|> Array.take k
let printMarkdownTable measureName top5 =
printfn "|\t| Name | %s |" measureName
printfn "|---|-----|-----|"
top5 |> Array.iteri (fun i (name, (value : float)) ->
if measureName = "Degree" then printfn "| %d. | %s | %d |" (i+1) name (int value)
else printfn "%d. | %s | %.1f |" (i+1) name value)
printMarkdownTable "Degree" (top_degree 5)
printMarkdownTable "Betweenness" (top_betweenness 5)
// Look at shortest path between two nodes
R.shortest__paths(namedParams["graph", box graph; "from", box "GREEDO"; "to", box "LEIA"])
//=====================================================================
// Compare graph density between the episodes
let densities, transitivity, nodeCounts =
[| for episodeIdx in 1..7 ->
let file = __SOURCE_DIRECTORY__ + "/networks/starwars-episode-" + string episodeIdx + "-interactions-allCharacters.json"
let nodes =
Network.Load(file).Nodes
|> Seq.map (fun node -> node.Name) |> Array.ofSeq
let nodeLookup = nodes |> Array.mapi (fun i name -> i, name) |> dict
let links = Network.Load(file).Links
let mergeAnakin = true
let graph =
let edges =
links
|> Array.collect (fun link ->
let n1 = nodeLookup.[link.Source]
let n2 = nodeLookup.[link.Target]
if mergeAnakin then
if n1 = "ANAKIN" then [| "DARTH VADER"; n2 |]
elif n2 = "ANAKIN" then [| n1; "DARTH VADER" |]
else
[| n1 ; n2 |]
else
[| n1 ; n2 |] )
namedParams["edges", box edges; "dir", box "undirected"]
|> R.graph
let clust : float = R.transitivity(graph, "undirected").GetValue()
let density : float = R.graph_density(graph).GetValue()
density, clust, nodes.Length
|]
|> Array.unzip3
open XPlot.GoogleCharts
// Plot the number of characters in each episode
let options =
Options(
title = "Number of characters",
hAxis = Axis(
title = "Number of characters",
viewWindowMode = "explicit",
viewWindow = ViewWindow(min = 0, max = 40)),
colors = [|"#3bc4c4"|]
)
nodeCounts
|> Array.mapi (fun i c -> "Episode " + string (i+1), c)
|> Chart.Bar
|> Chart.WithOptions(options)
// Plot the clustering coefficient of each episode
let options2 =
Options(
title = "Clustering coefficient (transitivity)",
hAxis = Axis(
title = "Clustering coefficient")
)
transitivity
|> Array.mapi (fun i c -> "Episode " + string (i+1), c)
|> Chart.Bar
|> Chart.WithOptions(options2)
// Plot the density of each network
let options3 =
Options(
title = "Network density",
hAxis = Axis(title = "Density (%)",
viewWindowMode = "explicit",
viewWindow = ViewWindow(min = 5, max = 18)),
colors = [|"#3bc4c4"|]
)
densities
|> Array.mapi (fun i c -> "Episode " + string (i+1), c * 100.0 )
|> Chart.Bar
|> Chart.WithOptions(options3)