diff --git a/exercises/practice/saddle-points/.docs/instructions.md b/exercises/practice/saddle-points/.docs/instructions.md index e2d746764..c585568b4 100644 --- a/exercises/practice/saddle-points/.docs/instructions.md +++ b/exercises/practice/saddle-points/.docs/instructions.md @@ -5,14 +5,14 @@ Your task is to find the potential trees where you could build your tree house. The data company provides the data as grids that show the heights of the trees. The rows of the grid represent the east-west direction, and the columns represent the north-south direction. -An acceptable tree will be the the largest in its row, while being the smallest in its column. +An acceptable tree will be the largest in its row, while being the smallest in its column. A grid might not have any good trees at all. Or it might have one, or even several. Here is a grid that has exactly one candidate tree. -``` +```text 1 2 3 4 |----------- 1 | 9 8 7 8 @@ -20,7 +20,7 @@ Here is a grid that has exactly one candidate tree. 3 | 6 6 7 1 ``` -- Row 2 has values 5, 3, and 1. The largest value is 5. +- Row 2 has values 5, 3, 2, and 4. The largest value is 5. - Column 1 has values 9, 5, and 6. The smallest value is 5. So the point at `[2, 1]` (row: 2, column: 1) is a great spot for a tree house. diff --git a/exercises/practice/saddle-points/.docs/introduction.md b/exercises/practice/saddle-points/.docs/introduction.md index b582efbd2..34b2c77e0 100644 --- a/exercises/practice/saddle-points/.docs/introduction.md +++ b/exercises/practice/saddle-points/.docs/introduction.md @@ -1,9 +1,11 @@ # Introduction -You are planning on building a tree house in the woods near your house so that you can watch the sun rise and set. +You plan to build a tree house in the woods near your house so that you can watch the sun rise and set. -You've obtained data from a local survey company that shows the heights of all the trees in each rectangular section of the map. -You need to analyze each grid on the map to find the perfect tree for your tree house. +You've obtained data from a local survey company that show the height of every tree in each rectangular section of the map. +You need to analyze each grid on the map to find good trees for your tree house. -The best tree will be the tallest tree compared to all the other trees to the east and west, so that you have the best possible view of the sunrises and sunsets. -You don't like climbing too much, so the perfect tree will also be the shortest among all the trees to the north and to the south. +A good tree is both: + +- taller than every tree to the east and west, so that you have the best possible view of the sunrises and sunsets. +- shorter than every tree to the north and south, to minimize the amount of tree climbing. diff --git a/exercises/practice/saddle-points/.meta/config.json b/exercises/practice/saddle-points/.meta/config.json index 20499074a..f9a4c9573 100644 --- a/exercises/practice/saddle-points/.meta/config.json +++ b/exercises/practice/saddle-points/.meta/config.json @@ -36,5 +36,5 @@ }, "blurb": "Detect saddle points in a matrix.", "source": "J Dalbey's Programming Practice problems", - "source_url": "http://users.csc.calpoly.edu/~jdalbey/103/Projects/ProgrammingPractice.html" + "source_url": "https://users.csc.calpoly.edu/~jdalbey/103/Projects/ProgrammingPractice.html" } diff --git a/exercises/practice/saddle-points/.meta/test_template.tera b/exercises/practice/saddle-points/.meta/test_template.tera new file mode 100644 index 000000000..20dc39e80 --- /dev/null +++ b/exercises/practice/saddle-points/.meta/test_template.tera @@ -0,0 +1,24 @@ +// We don't care about order +fn find_sorted_saddle_points(input: &[Vec]) -> Vec<(usize, usize)> { + let mut result = saddle_points::find_saddle_points(input); + result.sort_unstable(); + result +} +{% for test in cases %} +#[test] +{% if loop.index != 1 -%} +#[ignore] +{% endif -%} +fn {{ test.description | slugify | replace(from="-", to="_") }}() { + let input = &[{% for row in test.input.matrix %} + vec!{{ row }}, + {% endfor %}]; + let output = find_sorted_saddle_points(input); + let expected = &[ + {% for p in test.expected | sort(attribute = "column") | sort(attribute = "row") %} + ({{ p.row - 1 }}, {{ p.column - 1 }}), + {% endfor %} + ]; + assert_eq!(output, expected); +} +{% endfor -%} diff --git a/exercises/practice/saddle-points/.meta/tests.toml b/exercises/practice/saddle-points/.meta/tests.toml index be690e975..ca0085202 100644 --- a/exercises/practice/saddle-points/.meta/tests.toml +++ b/exercises/practice/saddle-points/.meta/tests.toml @@ -1,3 +1,37 @@ -# This is an auto-generated file. Regular comments will be removed when this -# file is regenerated. Regenerating will not touch any manually added keys, -# so comments can be added in a "comment" key. +# This is an auto-generated file. +# +# Regenerating this file via `configlet sync` will: +# - Recreate every `description` key/value pair +# - Recreate every `reimplements` key/value pair, where they exist in problem-specifications +# - Remove any `include = true` key/value pair (an omitted `include` key implies inclusion) +# - Preserve any other key/value pair +# +# As user-added comments (using the # character) will be removed when this file +# is regenerated, comments can be added via a `comment` key. + +[3e374e63-a2e0-4530-a39a-d53c560382bd] +description = "Can identify single saddle point" + +[6b501e2b-6c1f-491f-b1bb-7f278f760534] +description = "Can identify that empty matrix has no saddle points" + +[8c27cc64-e573-4fcb-a099-f0ae863fb02f] +description = "Can identify lack of saddle points when there are none" + +[6d1399bd-e105-40fd-a2c9-c6609507d7a3] +description = "Can identify multiple saddle points in a column" + +[3e81dce9-53b3-44e6-bf26-e328885fd5d1] +description = "Can identify multiple saddle points in a row" + +[88868621-b6f4-4837-bb8b-3fad8b25d46b] +description = "Can identify saddle point in bottom right corner" + +[5b9499ca-fcea-4195-830a-9c4584a0ee79] +description = "Can identify saddle points in a non square matrix" + +[ee99ccd2-a1f1-4283-ad39-f8c70f0cf594] +description = "Can identify that saddle points in a single column matrix are those with the minimum value" + +[63abf709-a84b-407f-a1b3-456638689713] +description = "Can identify that saddle points in a single row matrix are those with the maximum value" diff --git a/exercises/practice/saddle-points/tests/saddle-points.rs b/exercises/practice/saddle-points/tests/saddle-points.rs index 3bed9af77..730772d41 100644 --- a/exercises/practice/saddle-points/tests/saddle-points.rs +++ b/exercises/practice/saddle-points/tests/saddle-points.rs @@ -1,5 +1,3 @@ -use saddle_points::find_saddle_points; - // We don't care about order fn find_sorted_saddle_points(input: &[Vec]) -> Vec<(usize, usize)> { let mut result = saddle_points::find_saddle_points(input); @@ -8,99 +6,81 @@ fn find_sorted_saddle_points(input: &[Vec]) -> Vec<(usize, usize)> { } #[test] -fn identify_single_saddle_point() { - let input = vec![vec![9, 8, 7], vec![5, 3, 2], vec![6, 6, 7]]; - assert_eq!(vec![(1, 0)], find_saddle_points(&input)); -} - -#[test] -#[ignore] -fn identify_empty_matrix() { - let input = vec![vec![], vec![], vec![]]; - let expected: Vec<(usize, usize)> = Vec::new(); - assert_eq!(expected, find_saddle_points(&input)); -} - -#[test] -#[ignore] -fn identify_lack_of_saddle_point() { - let input = vec![vec![1, 2, 3], vec![3, 1, 2], vec![2, 3, 1]]; - let expected: Vec<(usize, usize)> = Vec::new(); - assert_eq!(expected, find_saddle_points(&input)); +fn can_identify_single_saddle_point() { + let input = &[vec![9, 8, 7], vec![5, 3, 2], vec![6, 6, 7]]; + let output = find_sorted_saddle_points(input); + let expected = &[(1, 0)]; + assert_eq!(output, expected); } #[test] #[ignore] -fn multiple_saddle_points_in_col() { - let input = vec![vec![4, 5, 4], vec![3, 5, 5], vec![1, 5, 4]]; - assert_eq!( - vec![(0, 1), (1, 1), (2, 1)], - find_sorted_saddle_points(&input) - ); +fn can_identify_that_empty_matrix_has_no_saddle_points() { + let input = &[vec![]]; + let output = find_sorted_saddle_points(input); + let expected = &[]; + assert_eq!(output, expected); } #[test] #[ignore] -fn multiple_saddle_points_in_row() { - let input = vec![vec![6, 7, 8], vec![5, 5, 5], vec![7, 5, 6]]; - assert_eq!( - vec![(1, 0), (1, 1), (1, 2)], - find_sorted_saddle_points(&input) - ); +fn can_identify_lack_of_saddle_points_when_there_are_none() { + let input = &[vec![1, 2, 3], vec![3, 1, 2], vec![2, 3, 1]]; + let output = find_sorted_saddle_points(input); + let expected = &[]; + assert_eq!(output, expected); } #[test] #[ignore] -fn identify_bottom_right_saddle_point() { - let input = vec![vec![8, 7, 9], vec![6, 7, 6], vec![3, 2, 5]]; - assert_eq!(vec![(2, 2)], find_saddle_points(&input)); +fn can_identify_multiple_saddle_points_in_a_column() { + let input = &[vec![4, 5, 4], vec![3, 5, 5], vec![1, 5, 4]]; + let output = find_sorted_saddle_points(input); + let expected = &[(0, 1), (1, 1), (2, 1)]; + assert_eq!(output, expected); } -// track specific as of v1.3 #[test] #[ignore] -fn non_square_matrix_high() { - let input = vec![vec![1, 5], vec![3, 6], vec![2, 7], vec![3, 8]]; - assert_eq!(vec![(0, 1)], find_saddle_points(&input)); +fn can_identify_multiple_saddle_points_in_a_row() { + let input = &[vec![6, 7, 8], vec![5, 5, 5], vec![7, 5, 6]]; + let output = find_sorted_saddle_points(input); + let expected = &[(1, 0), (1, 1), (1, 2)]; + assert_eq!(output, expected); } #[test] #[ignore] -fn non_square_matrix_wide() { - let input = vec![vec![3, 1, 3], vec![3, 2, 4]]; - assert_eq!(vec![(0, 0), (0, 2)], find_sorted_saddle_points(&input)); +fn can_identify_saddle_point_in_bottom_right_corner() { + let input = &[vec![8, 7, 9], vec![6, 7, 6], vec![3, 2, 5]]; + let output = find_sorted_saddle_points(input); + let expected = &[(2, 2)]; + assert_eq!(output, expected); } #[test] #[ignore] -fn single_column_matrix() { - let input = vec![vec![2], vec![1], vec![4], vec![1]]; - assert_eq!(vec![(1, 0), (3, 0)], find_sorted_saddle_points(&input)); +fn can_identify_saddle_points_in_a_non_square_matrix() { + let input = &[vec![3, 1, 3], vec![3, 2, 4]]; + let output = find_sorted_saddle_points(input); + let expected = &[(0, 0), (0, 2)]; + assert_eq!(output, expected); } #[test] #[ignore] -fn single_row_matrix() { - let input = vec![vec![2, 5, 3, 5]]; - assert_eq!(vec![(0, 1), (0, 3)], find_sorted_saddle_points(&input)); +fn can_identify_that_saddle_points_in_a_single_column_matrix_are_those_with_the_minimum_value() { + let input = &[vec![2], vec![1], vec![4], vec![1]]; + let output = find_sorted_saddle_points(input); + let expected = &[(1, 0), (3, 0)]; + assert_eq!(output, expected); } #[test] #[ignore] -fn identify_all_saddle_points() { - let input = vec![vec![5, 5, 5], vec![5, 5, 5], vec![5, 5, 5]]; - assert_eq!( - vec![ - (0, 0), - (0, 1), - (0, 2), - (1, 0), - (1, 1), - (1, 2), - (2, 0), - (2, 1), - (2, 2) - ], - find_sorted_saddle_points(&input) - ); +fn can_identify_that_saddle_points_in_a_single_row_matrix_are_those_with_the_maximum_value() { + let input = &[vec![2, 5, 3, 5]]; + let output = find_sorted_saddle_points(input); + let expected = &[(0, 1), (0, 3)]; + assert_eq!(output, expected); }