-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_t2m_trans.py
265 lines (222 loc) · 11.9 KB
/
train_t2m_trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import torch
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from os.path import join as pjoin
from torch.distributions import Categorical
import json
import clip
import options.option_transformer as option_trans
import models.vqvae as vqvae
import utils.utils_model as utils_model
import utils.eval_trans as eval_trans
from dataset import dataset_TM_train
from dataset import dataset_TM_eval
from dataset import dataset_tokenize
import models.t2m_trans as trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
warnings.filterwarnings('ignore')
from exit.utils import get_model, visualize_2motions
from tqdm import tqdm
from exit.utils import get_model, visualize_2motions, generate_src_mask, init_save_folder, uniform, cosine_schedule
from einops import rearrange, repeat
import torch.nn.functional as F
from exit.utils import base_dir
##### ---- Exp dirs ---- #####
args = option_trans.get_args_parser()
torch.manual_seed(args.seed)
# args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
init_save_folder(args)
# [TODO] make the 'output/' folder as arg
args.vq_dir = f'./output/vq/{args.vq_name}' #os.path.join("./dataset/KIT-ML" if args.dataname == 'kit' else "./dataset/HumanML3D", f'{args.vq_name}')
codebook_dir = f'{args.vq_dir}/codebook/'
args.resume_pth = f'{args.vq_dir}/net_last.pth'
os.makedirs(args.vq_dir, exist_ok = True)
os.makedirs(codebook_dir, exist_ok = True)
os.makedirs(args.out_dir, exist_ok = True)
os.makedirs(args.out_dir+'/html', exist_ok=True)
##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
from utils.word_vectorizer import WordVectorizer
w_vectorizer = WordVectorizer('./glove', 'our_vab')
val_loader = dataset_TM_eval.DATALoader(args.dataname, False, 32, w_vectorizer)
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
##### ---- Network ---- #####
clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False) # Must set jit=False for training
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
clip_model.eval()
for p in clip_model.parameters():
p.requires_grad = False
# https://github.com/openai/CLIP/issues/111
class TextCLIP(torch.nn.Module):
def __init__(self, model) :
super(TextCLIP, self).__init__()
self.model = model
def forward(self,text):
with torch.no_grad():
word_emb = self.model.token_embedding(text).type(self.model.dtype)
word_emb = word_emb + self.model.positional_embedding.type(self.model.dtype)
word_emb = word_emb.permute(1, 0, 2) # NLD -> LND
word_emb = self.model.transformer(word_emb)
word_emb = self.model.ln_final(word_emb).permute(1, 0, 2).float()
enctxt = self.model.encode_text(text).float()
return enctxt, word_emb
clip_model = TextCLIP(clip_model)
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate)
trans_encoder = trans.Text2Motion_Transformer(vqvae=net,
num_vq=args.nb_code,
embed_dim=args.embed_dim_gpt,
clip_dim=args.clip_dim,
block_size=args.block_size,
num_layers=args.num_layers,
num_local_layer=args.num_local_layer,
n_head=args.n_head_gpt,
drop_out_rate=args.drop_out_rate,
fc_rate=args.ff_rate)
print ('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.eval()
net.cuda()
if args.resume_trans is not None:
print ('loading transformer checkpoint from {}'.format(args.resume_trans))
ckpt = torch.load(args.resume_trans, map_location='cpu')
trans_encoder.load_state_dict(ckpt['trans'], strict=True)
trans_encoder.train()
trans_encoder.cuda()
trans_encoder = torch.nn.DataParallel(trans_encoder)
##### ---- Optimizer & Scheduler ---- #####
optimizer = utils_model.initial_optim(args.decay_option, args.lr, args.weight_decay, trans_encoder, args.optimizer)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
##### ---- Optimization goals ---- #####
loss_ce = torch.nn.CrossEntropyLoss(reduction='none')
##### ---- get code ---- #####
##### ---- Dataloader ---- #####
if len(os.listdir(codebook_dir)) == 0:
train_loader_token = dataset_tokenize.DATALoader(args.dataname, 1, unit_length=2**args.down_t)
for batch in train_loader_token:
pose, name = batch
bs, seq = pose.shape[0], pose.shape[1]
pose = pose.cuda().float() # bs, nb_joints, joints_dim, seq_len
target = net(pose, type='encode')
target = target.cpu().numpy()
np.save(pjoin(codebook_dir, name[0] +'.npy'), target)
train_loader = dataset_TM_train.DATALoader(args.dataname, args.batch_size, args.nb_code, codebook_dir, unit_length=2**args.down_t)
train_loader_iter = dataset_TM_train.cycle(train_loader)
##### ---- Training ---- #####
best_fid=1000
best_iter=0
best_div=100
best_top1=0
best_top2=0
best_top3=0
best_matching=100
# pred_pose_eval, pose, m_length, clip_text, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, best_multi, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, clip_model=clip_model, eval_wrapper=eval_wrapper)
def get_acc(cls_pred, target, mask):
cls_pred = torch.masked_select(cls_pred, mask.unsqueeze(-1)).view(-1, cls_pred.shape[-1])
target_all = torch.masked_select(target, mask)
probs = torch.softmax(cls_pred, dim=-1)
_, cls_pred_index = torch.max(probs, dim=-1)
right_num = (cls_pred_index == target_all).sum()
return right_num*100/mask.sum()
# while nb_iter <= args.total_iter:
for nb_iter in tqdm(range(1, args.total_iter + 1), position=0, leave=True):
batch = next(train_loader_iter)
clip_text, m_tokens, m_tokens_len = batch
m_tokens, m_tokens_len = m_tokens.cuda(), m_tokens_len.cuda()
bs = m_tokens.shape[0]
target = m_tokens # (bs, 26)
target = target.cuda()
batch_size, max_len = target.shape[:2]
# Random Drop Text
# text_mask = np.random.random(len(clip_text)) > .05
# clip_text = np.array(clip_text)
# clip_text[~text_mask] = ''
text = clip.tokenize(clip_text, truncate=True).cuda()
feat_clip_text, word_emb = clip_model(text)
# [INFO] Swap input tokens
if args.pkeep == -1:
proba = np.random.rand(1)[0]
mask = torch.bernoulli(proba * torch.ones(target.shape,
device=target.device))
else:
mask = torch.bernoulli(args.pkeep * torch.ones(target.shape,
device=target.device))
# random only motion token (not pad token). To prevent pad token got mixed up.
seq_mask_no_end = generate_src_mask(max_len, m_tokens_len)
mask = torch.logical_or(mask, ~seq_mask_no_end).int()
r_indices = torch.randint_like(target, args.nb_code)
input_indices = mask*target+(1-mask)*r_indices
# Time step masking
mask_id = get_model(net).vqvae.num_code + 2
# rand_time = uniform((batch_size,), device = target.device)
# rand_mask_probs = cosine_schedule(rand_time)
rand_mask_probs = torch.zeros(batch_size, device = m_tokens_len.device).float().uniform_(0.5, 1)
# rand_mask_probs = cosine_schedule(rand_mask_probs)
num_token_masked = (m_tokens_len * rand_mask_probs).round().clamp(min = 1)
seq_mask = generate_src_mask(max_len, m_tokens_len+1)
batch_randperm = torch.rand((batch_size, max_len), device = target.device) - seq_mask_no_end.int()
batch_randperm = batch_randperm.argsort(dim = -1)
mask_token = batch_randperm < rearrange(num_token_masked, 'b -> b 1')
# masked_target = torch.where(mask_token, input=input_indices, other=-1)
masked_input_indices = torch.where(mask_token, mask_id, input_indices)
att_txt = None # CFG: torch.rand((seq_mask.shape[0], 1)) > 0.1
cls_pred = trans_encoder(masked_input_indices, feat_clip_text, src_mask = seq_mask, att_txt=att_txt, word_emb=word_emb)[:, 1:]
# [INFO] Compute xent loss as a batch
weights = seq_mask_no_end / (seq_mask_no_end.sum(-1).unsqueeze(-1) * seq_mask_no_end.shape[0])
cls_pred_seq_masked = cls_pred[seq_mask_no_end, :].view(-1, cls_pred.shape[-1])
target_seq_masked = target[seq_mask_no_end]
weight_seq_masked = weights[seq_mask_no_end]
loss_cls = F.cross_entropy(cls_pred_seq_masked, target_seq_masked, reduction = 'none')
loss_cls = (loss_cls * weight_seq_masked).sum()
## global loss
optimizer.zero_grad()
loss_cls.backward()
optimizer.step()
scheduler.step()
if nb_iter % args.print_iter == 0 :
probs_seq_masked = torch.softmax(cls_pred_seq_masked, dim=-1)
_, cls_pred_seq_masked_index = torch.max(probs_seq_masked, dim=-1)
target_seq_masked = torch.masked_select(target, seq_mask_no_end)
right_seq_masked = (cls_pred_seq_masked_index == target_seq_masked).sum()
writer.add_scalar('./Loss/all', loss_cls, nb_iter)
writer.add_scalar('./ACC/every_token', right_seq_masked*100/seq_mask_no_end.sum(), nb_iter)
# [INFO] log mask/nomask separately
no_mask_token = ~mask_token * seq_mask_no_end
writer.add_scalar('./ACC/masked', get_acc(cls_pred, target, mask_token), nb_iter)
writer.add_scalar('./ACC/no_masked', get_acc(cls_pred, target, no_mask_token), nb_iter)
# msg = f"Train. Iter {nb_iter} : Loss. {avg_loss_cls:.5f}, ACC. {avg_acc:.4f}"
# logger.info(msg)
if nb_iter==0 or nb_iter % args.eval_iter == 0 or nb_iter == args.total_iter:
num_repeat = 1
rand_pos = False
if nb_iter == args.total_iter:
num_repeat = -30
rand_pos = True
val_loader = dataset_TM_eval.DATALoader(args.dataname, True, 32, w_vectorizer)
pred_pose_eval, pose, m_length, clip_text, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, best_multi, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model=clip_model, eval_wrapper=eval_wrapper, dataname=args.dataname, num_repeat=num_repeat, rand_pos=rand_pos)
# for i in range(4):
# x = pose[i].detach().cpu().numpy()
# y = pred_pose_eval[i].detach().cpu().numpy()
# l = m_length[i]
# caption = clip_text[i]
# cleaned_name = '-'.join(caption[:200].split('/'))
# visualize_2motions(x, val_loader.dataset.std, val_loader.dataset.mean, args.dataname, l, y, save_path=f'{args.out_dir}/html/{str(nb_iter)}_{cleaned_name}_{l}.html')
if nb_iter == args.total_iter:
msg_final = f"Train. Iter {best_iter} : FID. {best_fid:.5f}, Diversity. {best_div:.4f}, TOP1. {best_top1:.4f}, TOP2. {best_top2:.4f}, TOP3. {best_top3:.4f}"
logger.info(msg_final)
break