-
Notifications
You must be signed in to change notification settings - Fork 25
/
posetrack_style_convert.py
184 lines (156 loc) · 6.05 KB
/
posetrack_style_convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# -*- coding: utf-8 -*-
# ---------------------
import json
import sys
import click
import imageio
import numpy as np
from path import Path
from joint import Joint
from pose import Pose
# Mapping used for the conversion from JTA to posetrack-keypoint format
index_mapping = [
1, # nose becomes head_center
2, # head_bottom becomes neck
0, # head_top is head_top
7, # left_ear becomes left_clavicle
3, # right_ear becomes right_clavicle
8, # left_shoulder is left_shoulder
4, # right_shoulder is right_shoulder
9, # left_elbow is left_elbow
5, # right_elbow is right_elbow
10, # left_wrist is left_wrist
6, # right_wrist is right_wrist
19, # left_hip is left_hip
16, # right_hip is right_hip
20, # left_knee is left_knee
17, # right_knee is right_knee
21, # left_ankle is left_ankle
18, # right_ankle is right_ankle
]
POSETRACK_SKELETON = [
[16, 14],
[14, 12],
[17, 15],
[15, 13],
[12, 13],
[6, 12],
[7, 13],
[6, 7],
[6, 8],
[7, 9],
[8, 10],
[9, 11],
[2, 3],
[1, 2],
[1, 3],
[2, 4],
[3, 5],
[4, 6],
[5, 7]
]
# check python version
assert sys.version_info >= (3, 6), '[!] This script requires Python >= 3.6'
def get_pose(frame_data, person_id):
# type: (np.ndarray, int) -> Pose
"""
:param frame_data: data of the current frame
:param person_id: person identifier
:return: list of joints in the current frame with the required person ID
"""
pose = [Joint(j) for j in frame_data[frame_data[:, 1] == person_id]]
pose.sort(key=(lambda j: j.type))
return Pose(pose, person_id)
H1 = 'path of the output directory'
H2 = 'Consider only the first n frames.' \
+ ' Must be a positive integer between 0 and 900.'
@click.command()
@click.option('--out_dir_path', type=click.Path(), prompt='Enter \'out_dir_path\'', help=H1)
@click.option('--max_frame', type=click.IntRange(min=0, max=900), prompt="Enter the number of frame to process" \
+ " (integer between 0 and 900)", help=H2)
@click.option('--use_posetrack_skeleton', is_flag=True, help='Use the PoseTrack skeleton')
def main(out_dir_path, max_frame, use_posetrack_skeleton):
# type: (str) -> None
"""
Script for annotation conversion (from JTA format to PoseTrack format)
"""
out_dir_path = Path(out_dir_path).abspath()
if not out_dir_path.exists():
out_dir_path.makedirs()
for dir in Path('annotations').dirs():
basename = dir.basename()
out_subdir_path = out_dir_path / basename
if not out_subdir_path.exists():
out_subdir_path.makedirs()
print(f'▸ converting \'{basename}\' set')
for anno in dir.files():
with open(anno, 'r') as json_file:
data = json.load(json_file)
data = np.array(data)
print(f'▸ converting annotations of \'{Path(anno).abspath()}\'')
# getting sequence number from `anno`
sequence = None
try:
sequence = int(Path(anno).basename().split('_')[1].split('.')[0])
except:
print('[!] error during conversion.')
print('\ttry using JSON files with the original nomenclature.')
if use_posetrack_skeleton:
posetrack_dict = {
'images': [],
'annotations': [],
'categories': [{
'supercategory': 'person',
'id': 1,
'name': 'person',
'keypoints': [Joint.NAMES[index] for index in index_mapping],
'skeleton': POSETRACK_SKELETON
}]
}
else:
posetrack_dict = {
'images': [],
'annotations': [],
'categories': [{
'supercategory': 'person',
'id': 1,
'name': 'person',
'keypoints': Joint.NAMES,
'skeleton': Pose.SKELETON
}]
}
for frame_number in range(0, max_frame):
image_id = sequence * 1000 + (frame_number + 1)
posetrack_dict['images'].append({
"has_no_densepose": True,
"is_labeled": True,
"file_name": f"frames/{basename}/seq_{sequence}/{frame_number + 1}.jpg",
"nframes": max_frame,
"frame_id": image_id,
"vid_id": f"{sequence}",
"id": image_id
})
# NOTE: frame #0 does NOT exists: first frame is #1
frame_data = data[data[:, 0] == frame_number + 1] # type: np.ndarray
for p_id in set(frame_data[:, 1]):
pose = get_pose(frame_data=frame_data, person_id=p_id)
# ignore the "invisible" poses
# (invisible pose = pose of which I do not see any joint)
if pose.invisible:
continue
annotation = pose.posetrack_annotation
if use_posetrack_skeleton:
nested_keypoints = [annotation['keypoints'][3 * index:3 * (index+1)] for index in index_mapping]
annotation['keypoints'] = [item for keypoints in nested_keypoints for item in keypoints]
annotation['image_id'] = image_id
annotation['id'] = image_id * 100000 + int(p_id)
annotation['category_id'] = 1
annotation['scores'] = []
posetrack_dict['annotations'].append(annotation)
print(f'\r▸ progress: {100 * (frame_number / (max_frame-1)):6.2f}%', end='')
print()
out_file_path = out_subdir_path / f'seq_{sequence}.json'
with open(out_file_path, 'w') as f:
json.dump(posetrack_dict, f)
if __name__ == '__main__':
main()