This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 260
/
reconstruct.py
executable file
·287 lines (223 loc) · 8.21 KB
/
reconstruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#!/usr/bin/env python3
# Copyright 2004-present Facebook. All Rights Reserved.
import argparse
import json
import logging
import os
import random
import time
import torch
import deep_sdf
import deep_sdf.workspace as ws
def reconstruct(
decoder,
num_iterations,
latent_size,
test_sdf,
stat,
clamp_dist,
num_samples=30000,
lr=5e-4,
l2reg=False,
):
def adjust_learning_rate(
initial_lr, optimizer, num_iterations, decreased_by, adjust_lr_every
):
lr = initial_lr * ((1 / decreased_by) ** (num_iterations // adjust_lr_every))
for param_group in optimizer.param_groups:
param_group["lr"] = lr
decreased_by = 10
adjust_lr_every = int(num_iterations / 2)
if type(stat) == type(0.1):
latent = torch.ones(1, latent_size).normal_(mean=0, std=stat).cuda()
else:
latent = torch.normal(stat[0].detach(), stat[1].detach()).cuda()
latent.requires_grad = True
optimizer = torch.optim.Adam([latent], lr=lr)
loss_num = 0
loss_l1 = torch.nn.L1Loss()
for e in range(num_iterations):
decoder.eval()
sdf_data = deep_sdf.data.unpack_sdf_samples_from_ram(
test_sdf, num_samples
).cuda()
xyz = sdf_data[:, 0:3]
sdf_gt = sdf_data[:, 3].unsqueeze(1)
sdf_gt = torch.clamp(sdf_gt, -clamp_dist, clamp_dist)
adjust_learning_rate(lr, optimizer, e, decreased_by, adjust_lr_every)
optimizer.zero_grad()
latent_inputs = latent.expand(num_samples, -1)
inputs = torch.cat([latent_inputs, xyz], 1).cuda()
pred_sdf = decoder(inputs)
# TODO: why is this needed?
if e == 0:
pred_sdf = decoder(inputs)
pred_sdf = torch.clamp(pred_sdf, -clamp_dist, clamp_dist)
loss = loss_l1(pred_sdf, sdf_gt)
if l2reg:
loss += 1e-4 * torch.mean(latent.pow(2))
loss.backward()
optimizer.step()
if e % 50 == 0:
logging.debug(loss.cpu().data.numpy())
logging.debug(e)
logging.debug(latent.norm())
loss_num = loss.cpu().data.numpy()
return loss_num, latent
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser(
description="Use a trained DeepSDF decoder to reconstruct a shape given SDF "
+ "samples."
)
arg_parser.add_argument(
"--experiment",
"-e",
dest="experiment_directory",
required=True,
help="The experiment directory which includes specifications and saved model "
+ "files to use for reconstruction",
)
arg_parser.add_argument(
"--checkpoint",
"-c",
dest="checkpoint",
default="latest",
help="The checkpoint weights to use. This can be a number indicated an epoch "
+ "or 'latest' for the latest weights (this is the default)",
)
arg_parser.add_argument(
"--data",
"-d",
dest="data_source",
required=True,
help="The data source directory.",
)
arg_parser.add_argument(
"--split",
"-s",
dest="split_filename",
required=True,
help="The split to reconstruct.",
)
arg_parser.add_argument(
"--iters",
dest="iterations",
default=800,
help="The number of iterations of latent code optimization to perform.",
)
arg_parser.add_argument(
"--skip",
dest="skip",
action="store_true",
help="Skip meshes which have already been reconstructed.",
)
deep_sdf.add_common_args(arg_parser)
args = arg_parser.parse_args()
deep_sdf.configure_logging(args)
def empirical_stat(latent_vecs, indices):
lat_mat = torch.zeros(0).cuda()
for ind in indices:
lat_mat = torch.cat([lat_mat, latent_vecs[ind]], 0)
mean = torch.mean(lat_mat, 0)
var = torch.var(lat_mat, 0)
return mean, var
specs_filename = os.path.join(args.experiment_directory, "specs.json")
if not os.path.isfile(specs_filename):
raise Exception(
'The experiment directory does not include specifications file "specs.json"'
)
specs = json.load(open(specs_filename))
arch = __import__("networks." + specs["NetworkArch"], fromlist=["Decoder"])
latent_size = specs["CodeLength"]
decoder = arch.Decoder(latent_size, **specs["NetworkSpecs"])
decoder = torch.nn.DataParallel(decoder)
saved_model_state = torch.load(
os.path.join(
args.experiment_directory, ws.model_params_subdir, args.checkpoint + ".pth"
)
)
saved_model_epoch = saved_model_state["epoch"]
decoder.load_state_dict(saved_model_state["model_state_dict"])
decoder = decoder.module.cuda()
with open(args.split_filename, "r") as f:
split = json.load(f)
npz_filenames = deep_sdf.data.get_instance_filenames(args.data_source, split)
random.shuffle(npz_filenames)
logging.debug(decoder)
err_sum = 0.0
repeat = 1
save_latvec_only = False
rerun = 0
reconstruction_dir = os.path.join(
args.experiment_directory, ws.reconstructions_subdir, str(saved_model_epoch)
)
if not os.path.isdir(reconstruction_dir):
os.makedirs(reconstruction_dir)
reconstruction_meshes_dir = os.path.join(
reconstruction_dir, ws.reconstruction_meshes_subdir
)
if not os.path.isdir(reconstruction_meshes_dir):
os.makedirs(reconstruction_meshes_dir)
reconstruction_codes_dir = os.path.join(
reconstruction_dir, ws.reconstruction_codes_subdir
)
if not os.path.isdir(reconstruction_codes_dir):
os.makedirs(reconstruction_codes_dir)
for ii, npz in enumerate(npz_filenames):
if "npz" not in npz:
continue
full_filename = os.path.join(args.data_source, ws.sdf_samples_subdir, npz)
logging.debug("loading {}".format(npz))
data_sdf = deep_sdf.data.read_sdf_samples_into_ram(full_filename)
for k in range(repeat):
if rerun > 1:
mesh_filename = os.path.join(
reconstruction_meshes_dir, npz[:-4] + "-" + str(k + rerun)
)
latent_filename = os.path.join(
reconstruction_codes_dir, npz[:-4] + "-" + str(k + rerun) + ".pth"
)
else:
mesh_filename = os.path.join(reconstruction_meshes_dir, npz[:-4])
latent_filename = os.path.join(
reconstruction_codes_dir, npz[:-4] + ".pth"
)
if (
args.skip
and os.path.isfile(mesh_filename + ".ply")
and os.path.isfile(latent_filename)
):
continue
logging.info("reconstructing {}".format(npz))
data_sdf[0] = data_sdf[0][torch.randperm(data_sdf[0].shape[0])]
data_sdf[1] = data_sdf[1][torch.randperm(data_sdf[1].shape[0])]
start = time.time()
err, latent = reconstruct(
decoder,
int(args.iterations),
latent_size,
data_sdf,
0.01, # [emp_mean,emp_var],
0.1,
num_samples=8000,
lr=5e-3,
l2reg=True,
)
logging.debug("reconstruct time: {}".format(time.time() - start))
err_sum += err
logging.debug("current_error avg: {}".format((err_sum / (ii + 1))))
logging.debug(ii)
logging.debug("latent: {}".format(latent.detach().cpu().numpy()))
decoder.eval()
if not os.path.exists(os.path.dirname(mesh_filename)):
os.makedirs(os.path.dirname(mesh_filename))
if not save_latvec_only:
start = time.time()
with torch.no_grad():
deep_sdf.mesh.create_mesh(
decoder, latent, mesh_filename, N=256, max_batch=int(2 ** 18)
)
logging.debug("total time: {}".format(time.time() - start))
if not os.path.exists(os.path.dirname(latent_filename)):
os.makedirs(os.path.dirname(latent_filename))
torch.save(latent.unsqueeze(0), latent_filename)