-
Notifications
You must be signed in to change notification settings - Fork 310
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
91 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
# Copyright (c) 2017-present, Facebook, Inc. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
# | ||
|
||
""" | ||
A script to run SentEval on pre-computed embeddings from a file. | ||
""" | ||
|
||
from __future__ import absolute_import, division, unicode_literals | ||
|
||
import argparse | ||
import json | ||
import logging | ||
import sys | ||
|
||
import numpy as np | ||
|
||
# Set PATHs | ||
PATH_TO_SENTEVAL = '../' | ||
PATH_TO_DATA = '../data' | ||
|
||
sys.path.insert(0, PATH_TO_SENTEVAL) | ||
import senteval | ||
|
||
|
||
def main(): | ||
logging.basicConfig(format='%(asctime)s : %(message)s', | ||
level=logging.DEBUG) | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('sentences', | ||
help='a text file containing all SentEval sentences') | ||
parser.add_argument('embeddings', | ||
help='a NumPy binary file containing the corresponding embeddings') | ||
parser.add_argument('-t', '--tasks', | ||
help='a comma-separated list of tasks') | ||
args = parser.parse_args() | ||
|
||
sent2emb = {} | ||
|
||
def join_sentence(sent): | ||
if sys.version_info < (3, 0): | ||
sent = [w.decode('utf-8') if isinstance(w, str) else w for w in sent] | ||
else: | ||
sent = [w.decode('utf-8') if isinstance(w, bytes) else w for w in sent] | ||
return ' '.join(sent) | ||
|
||
def prepare(params, samples): | ||
# Build the mapping from sentences to embeddings | ||
sent2emb.clear() | ||
samples_set = set(join_sentence(sent) for sent in samples) | ||
all_embeddings = np.load(args.embeddings, mmap_mode='r') | ||
with open(args.sentences) as f_sent: | ||
for i, sent in enumerate(f_sent): | ||
if sys.version_info < (3, 0): | ||
sent = sent.decode('utf-8') | ||
sent = sent.rstrip('\n') | ||
if sent in samples_set: | ||
sent2emb[sent] = all_embeddings[i] | ||
|
||
def batcher(params, batch): | ||
embeddings = np.stack( | ||
[sent2emb[join_sentence(sent)] for sent in batch]) | ||
if len(embeddings.shape) != 2: | ||
embeddings = embeddings.reshape(len(embeddings), -1) | ||
assert len(embeddings.shape) == 2 | ||
return embeddings | ||
|
||
params_senteval = { | ||
'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 10 | ||
} | ||
params_senteval['classifier'] = { | ||
'nhid': 0, 'optim': 'adam', 'batch_size': 64, 'tenacity': 5, | ||
'epoch_size': 4 | ||
} | ||
|
||
se = senteval.engine.SE(params_senteval, batcher, prepare) | ||
if args.tasks is not None: | ||
transfer_tasks = args.tasks.split(',') | ||
else: | ||
transfer_tasks = se.list_tasks | ||
|
||
results = se.eval(transfer_tasks) | ||
json.dump(results, sys.stdout, skipkeys=True) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |