This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathResNetBasic.py
185 lines (140 loc) · 5.91 KB
/
ResNetBasic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch.autograd import Variable
import torch.nn as nn
import math
## Basic ResNet model
def init_layer(L):
# Initialization using fan-in
if isinstance(L, nn.Conv2d):
n = L.kernel_size[0]*L.kernel_size[1]*L.out_channels
L.weight.data.normal_(0,math.sqrt(2.0/float(n)))
elif isinstance(L, nn.BatchNorm2d):
L.weight.data.fill_(1)
L.bias.data.fill_(0)
# Simple ResNet Block
class SimpleBlock(nn.Module):
def __init__(self, indim, outdim, half_res):
super(SimpleBlock, self).__init__()
self.indim = indim
self.outdim = outdim
self.C1 = nn.Conv2d(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False)
self.relu1 = nn.ReLU(inplace=True)
self.relu2 = nn.ReLU(inplace=True)
self.BN1 = nn.BatchNorm2d(outdim)
self.C2 = nn.Conv2d(outdim, outdim,kernel_size=3, padding=1,bias=False)
self.BN2 = nn.BatchNorm2d(outdim)
self.parametrized_layers = [self.C1, self.C2, self.BN1, self.BN2]
self.half_res = half_res
# if the input number of channels is not equal to the output, then need a 1x1 convolution
if indim!=outdim:
self.shortcut = nn.Conv2d(indim, outdim, 1, 2 if half_res else 1, bias=False)
self.parametrized_layers.append(self.shortcut)
self.BNshortcut = nn.BatchNorm2d(outdim)
self.parametrized_layers.append(self.BNshortcut)
self.shortcut_type = '1x1'
else:
self.shortcut_type = 'identity'
for layer in self.parametrized_layers:
init_layer(layer)
def forward(self, x):
out = self.C1(x)
out = self.BN1(out)
out = self.relu1(out)
out = self.C2(out)
out = self.BN2(out)
short_out = x if self.shortcut_type == 'identity' else self.BNshortcut(self.shortcut(x))
out = out + short_out
out = self.relu2(out)
return out
# Bottleneck block
class BottleneckBlock(nn.Module):
def __init__(self, indim, outdim, half_res):
super(BottleneckBlock, self).__init__()
bottleneckdim = int(outdim/4)
self.indim = indim
self.outdim = outdim
self.C1 = nn.Conv2d(indim, bottleneckdim, kernel_size=1, bias=False)
self.relu = nn.ReLU()
self.BN1 = nn.BatchNorm2d(bottleneckdim)
self.C2 = nn.Conv2d(bottleneckdim, bottleneckdim, kernel_size=3, stride=2 if half_res else 1,padding=1)
self.BN2 = nn.BatchNorm2d(bottleneckdim)
self.C3 = nn.Conv2d(bottleneckdim, outdim, kernel_size=1, bias=False)
self.BN3 = nn.BatchNorm2d(outdim)
self.parametrized_layers = [self.C1, self.BN1, self.C2, self.BN2, self.C3, self.BN3]
self.half_res = half_res
# if the input number of channels is not equal to the output, then need a 1x1 convolution
if indim!=outdim:
self.shortcut = nn.Conv2d(indim, outdim, 1, stride=2 if half_res else 1, bias=False)
self.parametrized_layers.append(self.shortcut)
self.shortcut_type = '1x1'
else:
self.shortcut_type = 'identity'
for layer in self.parametrized_layers:
init_layer(layer)
def forward(self, x):
short_out = x if self.shortcut_type == 'identity' else self.shortcut(x)
out = self.C1(x)
out = self.BN1(out)
out = self.relu(out)
out = self.C2(out)
out = self.BN2(out)
out = self.relu(out)
out = self.C3(out)
out = self.BN3(out)
out = out + short_out
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self,block,list_of_num_layers, list_of_out_dims, num_classes=1000, only_trunk=False ):
# list_of_num_layers specifies number of layers in each stage
# list_of_out_dims specifies number of output channel for each stage
super(ResNet,self).__init__()
self.grads = []
self.fmaps = []
assert len(list_of_num_layers)==4, 'Can have only four stages'
conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
bn1 = nn.BatchNorm2d(64)
relu = nn.ReLU()
pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
init_layer(conv1)
init_layer(bn1)
trunk = [conv1, bn1, relu, pool1]
indim = 64
for i in range(4):
for j in range(list_of_num_layers[i]):
half_res = (i>=1) and (j==0)
B = block(indim, list_of_out_dims[i], half_res)
trunk.append(B)
indim = list_of_out_dims[i]
self.only_trunk=only_trunk
if not only_trunk:
avgpool = nn.AvgPool2d(7)
trunk.append(avgpool)
self.trunk = nn.Sequential(*trunk)
self.final_feat_dim = indim
if not only_trunk:
self.classifier = nn.Linear(indim, num_classes)
self.classifier.bias.data.fill_(0)
def forward(self,x):
out = self.trunk(x)
if self.only_trunk:
return out
out = out.view(out.size(0),-1)
scores = self.classifier(out)
return scores
def ResNet10(num_classes=1000, only_trunk=False):
return ResNet(SimpleBlock, [1,1,1,1],[64,128,256,512], num_classes, only_trunk)
def ResNet18(num_classes=1000):
return ResNet(SimpleBlock, [2,2,2,2],[64,128,256,512],num_classes)
def ResNet34(num_classes=1000):
return ResNet(SimpleBlock, [3,4,6,3],[64,128,256,512],num_classes)
def ResNet50(num_classes=1000):
return ResNet(BottleneckBlock, [3,4,6,3], [256,512,1024,2048], num_classes)
def ResNet101(num_classes=1000):
return ResNet(BottleneckBlock, [3,4,23,3],[256,512,1024,2048], num_classes)