This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 15
/
master.sh
144 lines (129 loc) · 2.94 KB
/
master.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
#!/bin/bash
# Parameters
#SBATCH --cpus-per-task=10
#SBATCH --error=/checkpoint/%u/jobs/%j.err
#SBATCH --gres=gpu:8
#SBATCH --job-name=SeLaVi_pretrain
#SBATCH --mem=450GB
#SBATCH --nodes=8
#SBATCH --ntasks-per-node=8
#SBATCH --open-mode=append
#SBATCH --output=/checkpoint/%u/jobs/%j.out
#SBATCH --signal=USR1@120
#SBATCH --time=72:00:00
source activate lab_vid
export MASTER_ADDR=${SLURM_NODELIST:0:9}${SLURM_NODELIST:10:4}
export MASTER_PORT=19500
# debugging flags (optional)
export NCCL_DEBUG=INFO
export PYTHONFAULTHANDLER=1
# set the network interface
export NCCL_SOCKET_IFNAME=^docker0,lo
echo $SLURMD_NODENAME $SLURM_JOB_ID $CUDA_VISIBLE_DEVICES
master_node=${SLURM_NODELIST:0:9}${SLURM_NODELIST:10:4}
dist_url="tcp://"
dist_url+=$master_node
dist_url+=:40000
if [ -z "$1" ]
then
DATASET="kinetics"
else
DATASET=$1
fi
if [ -z "$2" ]
then
NUM_CLUSTERS=400
else
NUM_CLUSTERS=$2
fi
if [ -z "$3" ]
then
HEADCOUNT=1
else
HEADCOUNT=$3
fi
if [ -z "$4" ]
then
MATCH="True"
else
MATCH=$4
fi
if [ -z "$5" ]
then
DISTRIBUTION="default"
else
DISTRIBUTION=$5
fi
if [ -z "$6" ]
then
IND_GROUPS=1
else
IND_GROUPS=$6
fi
### DATA PARAMS
ROOT_DIR="/path/to/kinetics"
BATCH_SIZE=16
NUM_FRAMES=30
TARGET_FPS=30
SAMPLE_RATE=1
NUM_CLIPS=1
CROP_SIZE=112
AUD_NUM_SEC=1
AUD_SAMPLE_RATE=24000
AUD_SPEC_TYPE=2
AUD_VOLUME_JITTERING='True'
AUD_TEMPORAL_JITTERING='False'
AUD_Z_NORMALIZE='False'
### OPTIM PARAMS
EPOCHS=201
BASE_LR=1e-2
WEIGHT_DECAY=1e-5
LR_WARM_EPOCHS=10
USE_WAMRUP='True'
USE_LR_SCHEDULER='False'
### MODEL PARAMS
VID_BASE_ARCH='r2plus1d_18'
AUD_BASE_ARCH='resnet9'
USE_MLP='True'
### EXP DUMP PATH
EXP_NAME="dataset_${DATASET}_clusters_${NUM_CLUSTERS}_headcount_${HEADCOUNT}_match_${MATCH}_dis_${DISTRIBUTION}_ind_groups_${IND_GROUPS}"
SAV_FOLDER="./experiments/SeLaVi/${EXP_NAME}"
mkdir -p ${SAV_FOLDER}
# command
srun --label python -u main.py \
--root_dir ${ROOT_DIR} \
--dump_path ${SAV_FOLDER} \
--num_frames ${NUM_FRAMES} \
--target_fps ${TARGET_FPS} \
--sample_rate ${SAMPLE_RATE} \
--num_train_clips ${NUM_CLIPS} \
--train_crop_size ${CROP_SIZE} \
--num_sec_aud ${AUD_NUM_SEC} \
--aud_sample_rate ${AUD_SAMPLE_RATE} \
--aud_spec_type ${AUD_SPEC_TYPE} \
--use_volume_jittering ${AUD_VOLUME_JITTERING} \
--use_audio_temp_jittering ${AUD_TEMPORAL_JITTERING} \
--z_normalize ${AUD_Z_NORMALIZE} \
--epochs ${EPOCHS} \
--batch_size ${BATCH_SIZE} \
--base_lr ${BASE_LR} \
--wd ${WEIGHT_DECAY} \
--warmup_epochs ${LR_WARM_EPOCHS} \
--use_warmup_scheduler ${USE_WAMRUP} \
--use_lr_scheduler ${USE_LR_SCHEDULER} \
--vid_base_arch ${VID_BASE_ARCH} \
--aud_base_arch ${AUD_BASE_ARCH} \
--use_mlp ${USE_MLP} \
--mlp_dim ${NUM_CLUSTERS} \
--dist_url $dist_url \
--ds_name ${DATASET} \
--headcount ${HEADCOUNT} \
--match ${MATCH} \
--distribution ${DISTRIBUTION} \
--ind_groups ${IND_GROUPS} \