This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 15
/
sk_utils.py
467 lines (414 loc) · 16.2 KB
/
sk_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import numpy as np
import os
import time
import torch
import torch.distributed as dist
from torch.utils.data.sampler import SubsetRandomSampler
from scipy.stats import entropy
from sklearn.metrics.cluster import (
normalized_mutual_info_score,
adjusted_mutual_info_score
)
from utils import trigger_job_requeue
def cluster(
args,
selflabels,
dataset,
model,
sk_counter,
logger,
writer,
group,
iter_num):
selflabels_old = selflabels.clone()
# get cluster assignments
with torch.no_grad():
selflabels = get_cluster_assignments_gpu(
args, dataset, model, logger, writer, group, iter_num)
self_labels_np = selflabels[:, 0].cpu().numpy()
# increment counter
sk_counter += 1
if selflabels is not None:
nmi_v = normalized_mutual_info_score(
self_labels_np,
selflabels_old[:,0].cpu().numpy(),
average_method='arithmetic'
)
if args.rank == 0:
logger.info(f'NMI_v: {nmi_v}')
if writer:
writer.add_scalar(
f'train/nmi_v/iter',
nmi_v,
iter_num
)
writer.add_scalar(
f'train/optim_count/iter',
sk_counter,
iter_num
)
true_labels = np.array(dataset._labels)[dataset.valid_indices]
nmi_to_labels_v = normalized_mutual_info_score(
self_labels_np,
true_labels,
average_method='arithmetic'
)
anmi_to_labels_v = adjusted_mutual_info_score(
self_labels_np,
true_labels,
average_method='arithmetic'
)
if args.rank == 0:
logger.info(f"NMI-tolabels: {nmi_to_labels_v}")
logger.info(f"aNMI-tolabels: {anmi_to_labels_v}")
if writer:
writer.add_scalar(
f'train/nmi-tolabels_v/iter',
nmi_to_labels_v,
iter_num
)
writer.add_scalar(
f'train/a-nmi-tolabels_v/iter',
anmi_to_labels_v,
iter_num
)
if sk_counter % 10 == 0:
entropies = []
purities = []
for sk_label in np.unique(self_labels_np):
of_this_cluster = self_labels_np == sk_label
size = of_this_cluster.sum()
if size != 0:
uniq, counts = np.unique(
true_labels[of_this_cluster], return_counts=True)
purities.append(max(counts)/sum(1.0*counts))
entropies.append(entropy(counts/sum(1.0*counts)))
logger.info(f"Avg entropy: {np.mean(entropies)}")
logger.info(f"Avg purity: {np.mean(purities)}")
if writer:
writer.add_histogram(
'train/entropies',
np.array(entropies),
iter_num
)
writer.add_histogram(
'train/purities',
np.array(purities),
iter_num
)
writer.add_scalar(
'train/avg-entropy',
np.mean(entropies),
iter_num
)
writer.add_scalar(
'train/avg-purity',
np.mean(purities),
iter_num
)
# signal received, relaunch experiment
if os.environ['SIGNAL_RECEIVED'] == 'True':
if args.rank == 0:
logger.info("Beginning requeue", logger=logger)
trigger_job_requeue(os.path.join(
args.dump_path, "checkpoint.pth.tar"))
# Ensure processes reach to end of optim clusters
if group is not None:
dist.barrier(group=group)
else:
dist.barrier()
return selflabels
def get_cluster_assignments_gpu(
args,
dataset,
model,
logger=None,
writer=None,
group=None,
iter_num=0
):
# clear cache at beginning
torch.cuda.empty_cache()
# Put model in eval mode
model.eval()
# Get length of dataset
N = len(dataset)
# this process deals only with a subset of the dataset
sampler = None
local_nmb_data = N // args.world_size
train_indices = torch.arange(
args.rank * local_nmb_data,
(args.rank + 1) * local_nmb_data
).int()
# create subset sampler
sampler = SubsetRandomSampler(train_indices)
# create data loader
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=64,
sampler=sampler,
shuffle=sampler is None,
num_workers=args.workers,
pin_memory=True,
collate_fn=None
)
# Ensure processes reach to end of optim clusters
if group is not None:
dist.barrier(group=group)
else:
dist.barrier()
# can't have more independent head-groups than heads
assert args.ind_groups <= args.headcount
if args.headcount > 1:
# aggregate GAP features when using multi heads
model.module.return_features = True
aggregtensor = torch.cuda.DoubleTensor if args.headcount == 1 else torch.cuda.FloatTensor
dtype = torch.float64 if args.headcount == 1 else torch.float32
L = torch.zeros((N, args.headcount), dtype=torch.long, device='cuda')
order_heads = list(range(args.headcount))
np.random.shuffle(order_heads) # is inplace
for hd_grp_idx in range(args.ind_groups):
# 1. aggregate inputs:
for batch_idx, batch in enumerate(dataloader):
# Get data
video, audio, _, idx, _ = batch
# Move to GPU
video = video.cuda(non_blocking=True)
audio = audio.cuda(non_blocking=True)
idx = idx.cuda(non_blocking=True)
# Forward pass
feat_v, feat_a = model(video, audio)
if args.headcount == 1:
feat_v = torch.nn.functional.softmax(
feat_v, dim=1, dtype=torch.float64)
feat_a = torch.nn.functional.softmax(
feat_a, dim=1, dtype=torch.float64)
# gather the features computed by all processes
all_feat_v_list = [aggregtensor(feat_v.size()) for src in range(args.world_size)]
all_feat_a_list = [aggregtensor(feat_a.size()) for src in range(args.world_size)]
all_indices_list = [torch.IntTensor(feat_v.size(0)).random_(0, N).cuda() for src in
range(args.world_size)]
dist.all_gather(all_feat_v_list, feat_v)
dist.all_gather(all_feat_a_list, feat_a)
dist.all_gather(all_indices_list, idx)
# only main process stores all features
if args.rank == 0:
all_feat_v = torch.cat(all_feat_v_list)
all_feat_a = torch.cat(all_feat_a_list)
all_indices = torch.cat(all_indices_list).cpu()
if batch_idx == 0 and (args.rank == 0):
fr = 0
K = feat_v.size(1)
PS_v = torch.zeros((N, K), dtype=dtype, device='cuda')
PS_a = torch.zeros((N, K), dtype=dtype, device='cuda')
indices = torch.zeros(N, dtype=torch.long)
# fill in arrays on main node
if args.rank == 0:
to = fr + all_feat_v.shape[0]
PS_v[fr: to] = all_feat_v
PS_a[fr: to] = all_feat_a
indices[fr: to] = all_indices
fr = to
# signal received, relaunch experiment
if os.environ['SIGNAL_RECEIVED'] == 'True':
if args.rank == 0:
logger.info("Beginning requeue", logger=logger)
trigger_job_requeue(os.path.join(
args.dump_path, "checkpoint.pth.tar"))
if group is not None:
dist.barrier(group=group)
else:
dist.barrier()
# 2. solve label assignment via sinkhorn-knopp:
if args.match and (iter_num == 0):
for head in order_heads[hd_grp_idx::args.ind_groups]:
# optimize to get labels
if args.headcount == 1:
if args.rank == 0:
PS_a_sk = PS_a
PS_v_sk = PS_v
else:
PS_v_sk, PS_a_sk = None, None
head_a = model.module.mlp_a
else:
head_a = getattr(model.module, f'mlp_a{head}')
head_v = getattr(model.module, f'mlp_v{head}')
if args.rank == 0:
PS_a_sk = torch.nn.functional.softmax(head_a.forward(PS_a),
dim=1, dtype=torch.float64)
PS_v_sk = torch.nn.functional.softmax(head_v.forward(PS_v),
dim=1, dtype=torch.float64)
else:
PS_v_sk, PS_a_sk = None, None
# align heads of audio and video:
match_order(args,
PS_v_sk,
PS_a_sk,
list(head_a.modules())[-1] if model.module.use_mlp else head_a,
steps=50000,
restarts=2,
logger=logger
)
if args.rank == 0:
logger.info("Optimizing via sinkhorn-knopp on master GPU")
if os.environ['SIGNAL_RECEIVED'] == 'True':
if args.rank == 0:
logger.info("Beginning requeue")
trigger_job_requeue(os.path.join(
args.dump_path, "checkpoint.pth.tar"))
_costs = [0 for i in range(args.headcount)]
_times = [0 for i in range(args.headcount)]
# optimize heads
for head in order_heads[hd_grp_idx::args.ind_groups]:
# optimize to get labels
if args.headcount == 1:
PS_a_sk = PS_a
PS_v_sk = PS_v
head_a = model.module.mlp_a
else:
head_a = getattr(model.module, f'mlp_a{head}')
head_v = getattr(model.module, f'mlp_v{head}')
PS_a_sk = torch.nn.functional.softmax(head_a.forward(PS_a),
dim=1, dtype=torch.float64)
PS_v_sk = torch.nn.functional.softmax(head_v.forward(PS_v),
dim=1, dtype=torch.float64)
# move activations to PS_v_sk
torch.mul(PS_v_sk, PS_a_sk, out=PS_v_sk)
sk_start = time.time()
# optimize
cost, L_head = optimize_L_sk_gpu(args, PS_v_sk, hc=head, logger=logger)
# cost, L_head = optimize_L_sk_gpu_log(args, PS_v_sk, hc=head, logger=logger)
# put it in correct order
L[indices, head] = L_head.to('cuda')
_costs[head] = cost
_times[head] = time.time() - sk_start
logger.info(f"Head {head}, Cost: (video): {_costs[head]:.3f}; time: {_times[head]:.3f}")
logger.info(f"Final Cost: (video): {np.mean(_costs):.3f}; time: {np.mean(_times):.3f}")
del PS_v
del PS_a
# processes wait on main process compute PS features
# Write costs to log
if writer:
writer.add_scalar('train/LP-cost', np.mean(_costs), iter_num)
if group is not None:
dist.barrier(group=group)
else:
dist.barrier()
torch.cuda.synchronize()
if group is not None:
torch.distributed.broadcast(L, 0, group)
else:
torch.distributed.broadcast(L, 0)
if group is not None:
dist.barrier(group=group)
else:
dist.barrier()
model.module.return_features = False
model.train()
return L
def optimize_L_sk_gpu(args, PS, hc, logger=None):
print('doing optimization now',flush=True)
# create L
N = PS.size(0)
K = PS.size(1)
tt = time.time()
_K_dist = torch.ones((K, 1), dtype=torch.float64, device='cuda') # / K
if args.distribution != 'default':
marginals_argsort = torch.argsort(PS.sum(0))
if (args.dist is None) or args.diff_dist_every:
if args.distribution == 'gauss':
if args.diff_dist_per_head:
_K_dists = [(torch.randn(size=(K, 1), dtype=torch.float64, device='cuda')*args.gauss_sd + 1) * N / K
for _ in range(args.headcount)]
args.dist = _K_dists
_K_dist = _K_dists[hc]
else:
_K_dist = (torch.randn(size=(K, 1), dtype=torch.float64, device='cuda')*args.gauss_sd + 1) * N / K
_K_dist = torch.clamp(_K_dist, min=1)
args.dist = _K_dist
if args.rank == 0:
logger.info(f"distribution used: {_K_dist}")
else:
if args.diff_dist_per_head:
_K_dist = args.dist[hc]
else:
_K_dist = args.dist
_K_dist[marginals_argsort] = torch.sort(_K_dist)[0]
beta = torch.ones((N, 1), dtype=torch.float64, device='cuda') / N
PS.pow_(0.5*args.lamb)
r = 1./_K_dist
r /= r.sum()
c = 1./N
err = 1e6
_counter = 0
ones = torch.ones(N, device='cuda:0', dtype=torch.float64)
while (err > 1e-1) and (_counter < 2000):
alpha = r / torch.matmul(beta.t(), PS).t()
beta_new = c / torch.matmul(PS, alpha)
if _counter % 10 == 0:
err = torch.sum(torch.abs((beta.squeeze() / beta_new.squeeze()) - ones)).cpu().item()
beta = beta_new
_counter += 1
if args.rank == 0:
logger.info(f"error: {err}, step : {_counter}")
# inplace calculations
torch.mul(PS, beta, out=PS)
torch.mul(alpha.t(), PS, out=PS)
newL = torch.argmax(PS, 1).cuda()
# return back to obtain cost (optional)
torch.mul((1./alpha).t(), PS, out=PS)
torch.mul(PS, 1./beta, out=PS)
sol = np.nansum(torch.log(PS[torch.arange(0, len(newL)).long(), newL]).cpu().numpy())
cost = -(1. / args.lamb) * sol / N
if args.rank == 0:
logger.info(f"opt took {(time.time() - tt) / 60.} min, {_counter} iters")
return cost, newL
@torch.no_grad()
def match_order(args, emb1, emb2_in, W2, steps=50000, restarts=2, logger=None):
fin_perm = torch.arange(0, len(W2.bias.data)).cuda()
if args.rank == 0:
assert type(W2) == torch.nn.modules.linear.Linear
K = emb1.shape[1]
def c(a, b):
return (torch.abs(a - b)).sum(0).sum(0)
last_iter = 0
cost = c(emb1, emb2_in)
best_cost = cost
logger.info(f'initial cost: {cost:.1f}')
for retries in range(restarts):
cost_try = cost.item()
perm = torch.arange(0, K)
emb2 = emb2_in.clone().detach()
for _iter in range(steps):
# what would happen if we switch cluster i with j in emb2
[i, j] = np.random.choice(K, 2, replace=False)
current = c(emb1[:,i], emb2[:,i]) + c(emb1[:,j], emb2[:,j])
future = c(emb1[:,i], emb2[:,j]) + c(emb1[:,j], emb2[:,i])
delta = current - future
if delta > 0:
# switch i and j
emb2[:,j], emb2[:,i] = emb2[:,i].clone().detach(), emb2[:,j].clone().detach()
cost_try -= delta
_i = int(perm[i])
perm[i] = int(perm[j])
perm[j] = _i
last_iter = _iter
if _iter - last_iter > 1000:
break
cost_try = c(emb1, emb2_in[:, perm])
logger.info(f"cost of this try: {cost_try:.2f}")
if cost_try < best_cost:
best_cost = cost_try
fin_perm = perm.cuda()
dist.broadcast(fin_perm, 0)
fin_perm = fin_perm.cpu()
if args.rank == 0:
logger.info(f"final cost: {best_cost:.2f}")
W2.bias.data = W2.bias.data[fin_perm]
W2.weight.data = W2.weight.data[fin_perm]