This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 283
/
Copy pathhubconf.py
86 lines (74 loc) · 2.76 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import torch
from torchvision.models.resnet import resnet50 as _resnet50
from src.resnet50 import resnet50w2 as _resnet50w2
from src.resnet50 import resnet50w4 as _resnet50w4
from src.resnet50 import resnet50w5 as _resnet50w5
dependencies = ["torch", "torchvision"]
def resnet50(pretrained=True, **kwargs):
"""
ResNet-50 pre-trained with SwAV.
Note that `fc.weight` and `fc.bias` are randomly initialized.
Achieves 75.3% top-1 accuracy on ImageNet when `fc` is trained.
"""
model = _resnet50(pretrained=False, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deepcluster/swav_800ep_pretrain.pth.tar",
map_location="cpu",
)
# removes "module."
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# load weights
model.load_state_dict(state_dict, strict=False)
return model
def resnet50w2(pretrained=True, **kwargs):
"""
ResNet-50-w2 pre-trained with SwAV.
"""
model = _resnet50w2(**kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deepcluster/swav_RN50w2_400ep_pretrain.pth.tar",
map_location="cpu",
)
# removes "module."
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# load weights
model.load_state_dict(state_dict, strict=False)
return model
def resnet50w4(pretrained=True, **kwargs):
"""
ResNet-50-w4 pre-trained with SwAV.
"""
model = _resnet50w4(**kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deepcluster/swav_RN50w4_400ep_pretrain.pth.tar",
map_location="cpu",
)
# removes "module."
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# load weights
model.load_state_dict(state_dict, strict=False)
return model
def resnet50w5(pretrained=True, **kwargs):
"""
ResNet-50-w5 pre-trained with SwAV.
"""
model = _resnet50w5(**kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deepcluster/swav_RN50w5_400ep_pretrain.pth.tar",
map_location="cpu",
)
# removes "module."
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# load weights
model.load_state_dict(state_dict, strict=False)
return model