forked from mareikethies/geometry_gradients_CT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
helper.py
116 lines (93 loc) · 4.01 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from numba import cuda
import numpy as np
@cuda.jit
def vox2world_cuda(voxel_index, spacing, origin):
return voxel_index * spacing + origin
@cuda.jit
def world2vox_cuda(world_index, spacing, origin):
return (world_index - origin) / spacing
@cuda.jit
def interpolate1d_cuda(array, pos):
pos_floor = int(pos)
pos_floor_plus_one = pos_floor + 1
delta = pos - pos_floor
# Check boundary conditions
if pos_floor < 0 or pos_floor > len(array) - 1:
pos_floor = None
if pos_floor_plus_one < 0 or pos_floor_plus_one > len(array) - 1:
pos_floor_plus_one = None
# Get function values of the data points
a = 0.0
b = 0.0
if pos_floor is not None:
a = array[int(pos_floor)]
if pos_floor_plus_one is not None:
b = array[int(pos_floor_plus_one)]
return delta * b + (1 - delta) * a
@cuda.jit
def interpolate2d_cuda(array, pos_x, pos_y):
pos_x_floor = int(pos_x)
pos_x_floor_plus_one = pos_x_floor + 1
delta_x = pos_x - pos_x_floor
pos_y_floor = int(pos_y)
pos_y_floor_plus_one = pos_y_floor + 1
delta_y = pos_y - pos_y_floor
# Check boundary conditions
if pos_x_floor < 0 or pos_x_floor > array.shape[0] - 1:
pos_x_floor = None
if pos_x_floor_plus_one < 0 or pos_x_floor_plus_one > array.shape[0] - 1:
pos_x_floor_plus_one = None
if pos_y_floor < 0 or pos_y_floor > array.shape[1] - 1:
pos_y_floor = None
if pos_y_floor_plus_one < 0 or pos_y_floor_plus_one > array.shape[1] - 1:
pos_y_floor_plus_one = None
# Get function values of the data points
a = 0.0
b = 0.0
c = 0.0
d = 0.0
if pos_x_floor is not None and pos_y_floor is not None:
a = array[int(pos_x_floor), int(pos_y_floor)]
if pos_x_floor_plus_one is not None and pos_y_floor is not None:
b = array[int(pos_x_floor_plus_one), int(pos_y_floor)]
if pos_x_floor is not None and pos_y_floor_plus_one is not None:
c = array[int(pos_x_floor), int(pos_y_floor_plus_one)]
if pos_x_floor_plus_one is not None and pos_y_floor_plus_one is not None:
d = array[int(pos_x_floor_plus_one), int(pos_y_floor_plus_one)]
tmp1 = delta_x * b + (1 - delta_x) * a
tmp2 = delta_x * d + (1 - delta_x) * c
return delta_y * tmp2 + (1 - delta_y) * tmp1
def params_2_proj_matrix(angles, dsd, dsi, tx, ty, det_spacing, det_origin):
''' compute fan beam projection matrices from parameters for circular trajectory
:param angles: projection angles in radians
:param dsd: source to detector distance
:param dsi: source to isocenter distance
:param tx: additional detector offset in x (usually 0 for motion free, ideal trajectory)
:param ty: additional detector offset in y (usually 0 for motion free, ideal trajectory)
:param det_spacing: detector pixel size
:param det_origin: attention!! this is (-detector_origin / detector_spacing) or simply (image_size - 0.5)!!
:return:
'''
num_angles = len(angles)
matrices = np.zeros((num_angles, 2, 3))
matrices[:, 0, 0] = -dsd * np.sin(angles) / det_spacing + det_origin * np.cos(angles)
matrices[:, 0, 1] = dsd * np.cos(angles) / det_spacing + det_origin * np.sin(angles)
matrices[:, 0, 2] = dsd * tx / det_spacing + det_origin * (dsi + ty)
matrices[:, 1, 0] = np.cos(angles)
matrices[:, 1, 1] = np.sin(angles)
matrices[:, 1, 2] = dsi + ty
intrinsics = np.zeros((num_angles, 2, 2))
intrinsics[:, 0, 0] = dsd / det_spacing
intrinsics[:, 0, 1] = det_origin
intrinsics[:, 1, 1] = 1.
extrinsics = np.zeros((num_angles, 2, 3))
extrinsics[:, 0, 0] = - np.sin(angles)
extrinsics[:, 0, 1] = np.cos(angles)
extrinsics[:, 0, 2] = tx
extrinsics[:, 1, 0] = np.cos(angles)
extrinsics[:, 1, 1] = np.sin(angles)
extrinsics[:, 1, 2] = dsi + ty
assert np.allclose(matrices, np.einsum('aij,ajk->aik', intrinsics, extrinsics))
# normalize w.r.t. lower right entry
matrices = matrices / matrices[:, 1, 2][:, np.newaxis, np.newaxis]
return matrices, extrinsics, intrinsics